首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.  相似文献   

2.
3.
未被合理处置的废塑料污染已成为全球性的环境问题,探索塑料废弃物的无害化处理技术势在必行。近来,研究证实了自然界中存在可以降解塑料的微生物及酶。利用微生物或酶对废塑料进行生物处理成为可能。聚氨酯塑料(Polyurethane,PUR)是广泛应用的通用塑料之一,其废弃物量已占到所有废塑料总体积的30%。文中将PUR塑料发明应用70年来有关微生物降解的研究进行了全面综述,对PUR塑料降解真菌、细菌、降解基因与酶、降解产物及相关的生物处理技术系统等进行了总结与分析,并对实现PUR废塑料高效生物处理需解决的关键科学问题进行了展望。  相似文献   

4.
Interactions between arbuscular mycorrhizal fungi and soil bacteria   总被引:4,自引:0,他引:4  
The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria, mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented.  相似文献   

5.
Feasibility of bioremediation by white-rot fungi   总被引:33,自引:0,他引:33  
The ligninolytic enzymes of white-rot fungi have a broad substrate specificity and have been implicated in the transformation and mineralization of organopollutants with structural similarities to lignin. This review presents evidence for the involvement of these enzymes in white-rot fungal degradation of munitions waste, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, bleach plant effluent, synthetic dyes, synthetic polymers, and wood preservatives. Factors relating to the feasibility of using white-rot fungi in bioremediation treatments for organopollutants are discussed.  相似文献   

6.
With the focus on alternative microbes for soil-bioremediation, 18 species of litter-decomposing basidiomycetous fungi were screened for their ability to grow on different lignocellulosic substrates including straw, flax and pine bark as well as to produce ligninolytic enzymes, namely laccase and manganese peroxidase. Following characteristics have been chosen as criteria for the strain selection: (i) the ability to grow at least on one of the mentioned materials, (ii) production of either of the ligninolytic enzymes and (iii) the ability to invade non-sterile soil. As the result, eight species were selected for a bioremediation experiment with an artificially contaminated soil (total polycyclic aromatic hydrocarbon (PAH) concentration 250 mg/kg soil). Up to 70%, 86% and 84% of benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene, respectively, were removed in presence of fungi while the indigenous microorganisms converted merely up to 29%, 26% and 43% of these compounds in 30 days. Low molecular-mass PAHs studied were easily degraded by soil microbes and only anthracene degradation was enhanced by the fungi as well. The agaric basidiomycetes Stropharia rugosoannulata and Stropharia coronilla were the most efficient PAH degraders among the litter-decomposing species used.  相似文献   

7.
Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.  相似文献   

8.
The transformations of lignin that occur during its biodegradation are complex and incompletely understood. Certain fungi of the white-rot group, and possibly other fungi and bacteria, completely decompose lignin to carbon dioxide and water. Other fungi and bacteria apparently degrade lignin incompletely. Differences in lignin-degrading abilities observed for different organisms may result from differences in the completeness of their ligninolytic enzyme systems. Not all lignin components may be attacked by a particular organism. Alternatively, different organisms may differ in their basic mechanisms of attack on lignin. The basic pathways of lignin degradation have been elucidated only for certain representatives of the white-and brown-rot fungi. Although it is known that each of the principal structural components of lignin is attacked by other fungi and bacteria, the biochemistry of that attack has not been elucidated. Work with low molecular weight lignin models has provided only limited information on possible pathways of lignin degradation by microorganisms. There is little evidence to suggest a correlation between abilities to degrade single-ring aromatic or lignin model compounds and the ability to degrade polymeric lignin. More evidence has come from analysis of spent culture media for lignin breakdown products and from comparative chemical analyses of sound lignins versus decayed lignin residues. Accumulated evidence with the most thoroughly studied white-rot fungi suggests that with these fungi lignin degradation proceeds by way of extracellular mixed-function oxygenases and dioxygenases, which catalyse demethylations, hydroxylations and ring-fission reactions within a largely intact polymer, concomitant with some release of low molecular weight lignin fragments. There are also apparent relationships between lignin, carbohydrate and nitrogen metabolism for some organisms, but the relationships may vary from one organism to another. Although research is now mostly at a basic level, industrial applications may result from lignin degradation research. Considerable potential exists for the development of bioconversions which might produce low molecular weight chemicals from waste lignins, and thereby reduce our dependence on petroleum as a source of these chemicals. Alternatively, such bioconversions might produce chemically altered forms of polymeric lignin that may be valuable industrially.  相似文献   

9.
Numbers of airborne microorganisms, fungi, Gram-negative bacteria, thermophilic microorganisms, endotoxins and dust have been monitored in resource recovery plants and composting plants. The work is still in progress, so this paper decribes only preliminary results. Only low levels (< 15 ng m?3) of endotoxins were found at all locations. Levels of microorganisms, fungi, Gram-negative bacteria and dust changed with quality of waste, activity in the plant etc. Levels of airborne microorganisms, endotoxins and dust could be considerably decreased in resource recovery plants if only waste of good quality, e.g. presorted materials, is handled. For composting plants the highest levels of airborne microorganisms were found during aeration, especially by indoor composting where levels of 8.3 × 105 CFU of mesophilic microorganisms were found.  相似文献   

10.
植物根系分泌物对土壤污染修复的作用及影响机理   总被引:4,自引:0,他引:4  
王亚  冯发运  葛静  李勇  余向阳 《生态学报》2022,42(3):829-842
生物修复是一种经济环保的土壤修复技术。根系分泌物是利用生物修复污染土壤过程中的关键物质,也是植物与土壤微生物进行物质交换和信息传递的重要载体,在植物响应污染物胁迫中扮演重要角色。研究植物根系分泌物对土壤污染修复的作用和影响机理,是深入理解植物和微生物环境适应机制的重要途径,对促进生物修复污染土壤有重要指导意义。从污染物胁迫对根系分泌物的影响、根系分泌物对土壤污染物环境行为的影响、根系分泌物在调控污染土壤中根际微生物群落结构和多样性中发挥的作用等几个方面综述了根系分泌物对土壤污染修复的影响及内在机制。研究结果表明,根系分泌物在降低重金属对植物的毒性、加速有机污染物降解等方面有非常重要的作用。根系分泌物对土壤微生物的丰度和多样性均有显著影响,其与根际微生物互作在土壤污染物的消减中发挥了重要的调控作用。在此基础上,提出了以往研究中的不足,并对污染物胁迫下根系分泌物未来研究的方向和趋势进行了展望。  相似文献   

11.
Interactions between mycorrhizal fungi and other soil organisms   总被引:12,自引:0,他引:12  
Mycorrhizal fungi interact with a wide range of other soil organisms, in the root, in the rhizosphere and in the bulk soil. These interactions may be inhibitory or stimulatory; some are clearly competitive, others may be mutualistic. Effects can be seen at all stages of the mycorrhizal fungal life-cycle, from spore population dynamics (predation, dispersal and germination) through root colonization to external hyphal growth. Two areas that seem likely to be of particular importance to the functioning of the symbiosis are the role of bacteria in promoting mycorrhiza formation and of soil animals in grazing the external mycelium. Mycorrhizal fungi also modify the interactions of plants with other soil organisms, both pathogens, such as root-inhabiting nematodes and fungi, and mutualists, notably nitrogen-fixing bacteria. These interactions are probably important both in natural ecosystems, where pathogens are increasingly recognized as playing controlling roles, and in agricultural systems, where mycorrhizas may be valuable in designing integrated systems of pest control and growth stimulation.  相似文献   

12.
Inorganic cyanide and nitrile compounds are distributed widely in the environment, chiefly as a result of anthropogenic activity but also through cyanide synthesis by a range of organisms including higher plants, fungi and bacteria. The major source of cyanide in soil and water is through the discharge of effluents containing a variety of inorganic cyanide and nitriles. Here the fate of cyanide compounds in soil and water is reviewed, identifying those factors that affect their persistence and which determine whether they are amenable to biological degradation. The exploitation of cyanides by a variety of taxa, as a mechanism to avoid predation or to inhibit competitors has led to the evolution in many organisms of enzymes that catalyse degradation of a range of cyanide compounds. Microorganisms expressing pathways involved in cyanide degradation are briefly reviewed and the current applications of bacteria and fungi in the biodegradation of cyanide contamination in the field are discussed. Finally, recent advances that offer an insight into the potential of microbial systems for the bioremediation of cyanide compounds under a range of environmental conditions are identified, and the future potential of these technologies for the treatment of cyanide pollution is discussed.  相似文献   

13.
A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.  相似文献   

14.
We report that two species of basidiomycete fungi (Polyporus versicolor and Poria monticola) grow in minimal liquid or solid medium when supplemented with crushed lignite coal. The fungi also grow directly on crushed lignite coal. The growth of both fungi was observed qualitatively as the production and extension of hyphae. No fungal growth occurred in minimal agar medium without coal. The fungi degraded solid lignite coal to a black liquid product which never appeared in cultures unless fungi and coal were present together. Apparently, lignite coal can serve as the principal substrate for the growth of the fungi. Infrared analyses of the liquid products of lignite degradation showed both similarities to and differences from the original lignite.  相似文献   

15.
Exploiting the potential of bacteria in phytoremediation for the removal of organic and inorganic pollutants from soils and (ground)water holds great promise. Besides bacteria, mycorrhizal fungi and free-living saprotrophs are well known for their strong degradative capacities and plant growth promotion effects, which makes them of high interest for use in different bioremediation strategies. To further increase the efficiency and successes of phytoremediation, interactions between plants and their associated microorganisms, both bacteria and fungi, should be further investigated, in addition to the close interactions between bacteria and fungi. Benefitting from an increased understanding of microbial community structure and assembly allows us to better understand how the holobiont can be modified to improve pollutant degradation and plant growth. In this review, we present an overview of insights in plant-bacteria-fungi interactions and the opportunities of exploiting these tripartite interactions to enhance the effectiveness of phytoremediation of organic pollutants.  相似文献   

16.
Seven commercial 3- to 7-ring (R) polycyclic aromatic hydrocarbons (PAH) as well as PAH derived from lignite tar were spiked into 3 soils (0.8 to 9.7% of organic carbon). The disappearance of the original PAH was determined for the freshly spiked soils, for soils incubated for up to 287 d with their indigenous microflora, and for autoclaved, unsterile and pasteurized soils inoculated with basidiomycetous and ascomycetous fungi. Three to 12 d after spiking, 22 to 38% of the PAH could no longer be recovered from the soils. At 287 d, 88.5 to 92.7%, 83.4 to 87.4%, and 22.0 to 42.1% of the 3-, 4-, and 5- to 7-R PAH, respectively, had disappeared from the unsterile, uninoculated soils. In 2 organic-rich sterile soils, the groups of wood- and straw-degrading, terricolous, and ectomycorrhizal fungi reduced the concentration of 5 PAH by 12.6, 37.9, and 9.4% in 287 d. Five- to 7-R PAH were degraded as efficiently as most of the 3- to 4-R PAH. In organic-rich unsterile soils inoculated with wood- and straw-degrading fungi, the degradation of 3- to 4-R PAH was not accelerated by the presence of fungi.The 5- to 7-R PAH, which were not attacked by bacteria, were degraded by fungi to 29 to 42% in optimum combinations of fungal species and soil type. In organic-poor unsterile soil, these same fungi delayed the net degradation of PAH possibly for 2 reasons. Mycelia of Pleurotus killed most of the indigenous soil bacteria expected to take part in the degradation of PAH, whereas those of Hypholoma and Stropharia promoted the development of opportunistic bacteria in the soil, which must not necessarily be PAH degraders. Contemporarily, the contribution of the fungi themselves to PAH degradation may be negligible in the absence of soil organic matter due to the lower production of ligninolytic enzymes. It is concluded that fungi degrade PAH irrespective of their molecular size in organic-rich and wood chip-amended soils which promote fungal oxidative enzyme production.  相似文献   

17.
选择苜蓿草和水稻为供试植物,以污染物水平、有机以、专性细菌和真菌为调控因子,进行土壤中矿物油和PAHs的生物修复研究,结果表明,投肥对苜蓿草土壤中矿物油降解有促进作用,但对水稻土壤中矿物油降解无明显作用,投肥均使苜蓿草和水稻土壤中多环芒烃总量(11种列于美国EPA黑名单上的多环芳烃)降解率提高,这一降解促进效果在水稻土壤中好于苜蓿草土壤,有机肥量与苜蓿草根际土著真菌、细菌数量明显呈正相关,但仅与水稻根际土著细菌数量呈明显正相关,两种土壤中实测真菌和细菌总数均与试验投加专性真菌和细菌量无关,水稻土和苜蓿草土壤中3环多环芳烃的降解随投肥量增大而降解率提高,其在水稻土蓑中的效果好于苜蓿草土壤,投肥怪4环多环芳烃的降解并未产生有效作用。  相似文献   

18.
多环芳烃污染土壤生物修复研究进展   总被引:1,自引:0,他引:1  
多环芳烃 (Polycyclic aromatic hydrocarbons,PAHs) 是一类广泛分布于环境中的持久性污染物,结构稳定、难以降解,对生态环境和生物具有“三致”毒害性,其环境去除和修复备受关注。绿色、安全、经济的生物修复技术被广泛应用于PAHs污染土壤的修复。本文从土壤中PAHs的来源、迁移、归趋和污染水平总结了目前我国土壤多环芳烃污染的基本状况;归纳了具有PAHs降解作用的微生物、植物种类及机理;比较了微生物修复、植物修复和联合修复3类主要的生物修复技术。指出植物与微生物的互作机理的解析,抗逆菌株、植株的筛选与培育,实际应用的安全和效能评估应成为多环芳烃污染土壤修复领域未来的研究方向。  相似文献   

19.
Some strains of white rot fungi, non-lignolytic fungi and litter-decomposing basidiomycetes have been recognized as PAH degraders. The purpose of our research was to enlarge the scope of PAH-degrading fungi and explore the huge endophytic microorganism resource for bioremediation of PAHs. In this study, phenanthrene was used as a model PAHs compound. Nine strains of endophytic fungi isolated from four kinds of plant from Eupharbiaceae were screened for degradation of phenanthrene. The endophytic fungus Ceratobasidum stevensii (strain B6) isolated from Bischofia polycarpam showed high degradation efficiency and was selected for further studies. Into the fungal culture, 100 mg l−1 phenanthrene was added, and after 10 days of incubation, about 89.51% of the phenanthrene was removed by strain B6. Extracellular ligninolytic enzyme activities of strain B6 were tested. The results showed that manganese peroxidase [MnP] was the predominant ligninolytic enzyme and that its production was greatly induced by the presence of phenanthrene. To confirm the involvement of MnP in phenanthrene degradation, promotion and inhibition studies on MnP in different concentration level of Mn2+ and NaN3 were performed. Additionally, fungal mycelium-free and resuspended experiments were carried out. The results showed no apparent correlation between MnP activity and phenanthrene degradation. The mycelium and fresh medium were the crucial factors affecting the degradation of phenanthrene. To date, this is the first report on PAH degradation by Ceratobasidum stevensii. This study suggests that endophytic fungi might be a novel and important resource for microorganisms that have PAH-degrading capabilities.  相似文献   

20.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that it was absent in the root tissues. At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels, through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号