首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3′ DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5′ DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.  相似文献   

2.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

3.
The influence of Rous sarcoma virus (RSV)-associated RNase H on the in vitro synthesis of DNA by the RSV RNA-directed DNA polymerase was determined under conditions whereby RNase H activity was selectively inhibited with NaF. Not only were we unable to detect any effect on the size, structure, or genetic complixity of the DNA product synthesized in the absence of RNase H activity, but the displacement of DNA from the 70S RNA:DNA hybrid structures was also unaffected. The suitability of 70S RNA:DNA hybrid structures synthesized in vitro to serve as a substrate for RNase H is discussed.  相似文献   

4.
The influence of Rous sarcoma virus (RSV)-associated RNase H on the in vitro synthesis of DNA by the RSV RNA-directed DNA polymerase was determined under conditions whereby RNase H activity was selectively inhibited with NaF. Not only were we unable to detect any effect on the size, structure, or genetic complexity of the DNA product synthesized in the absence of RNase H activity, but the displacement of DNA from the 70S RNA:DNA hybrid structures was also unaffected. The suitability of 70S RNA:DNA hybrid structures synthesized in vitro to serve as a substrate for RNase H is discussed.  相似文献   

5.
6.
Oligonucleotide-targeted RNase H protection assays are powerful means to analyze protein binding domains in ribonucleoprotein particles (RNPs). In such an assay, the RNA component of a RNP and, in an essential control reaction, the corresponding deproteinized RNA are targeted with an antisense DNA oligonucleotide and RNase H. If the oligonucleotide is able to anneal to the complementary sequence of the RNA, RNase H will cleave the RNA within the double-stranded DNA/RNA region. However, protein binding to a specific RNA sequence may prevent hybridization of the DNA oligonucleotide, thereby protecting the RNA molecule from endonucleolytic cleavage. An RNase H protection analysis can usually be carried out with crude cell extract and does not require further RNP purification. On the other hand, purified RNP fractions are preferable when a crude extract contains RNase activity or a heterogenous RNP population of a specific RNA. The cleavage pattern of RNase H digestion can be analyzed by Northern blotting or primer-extension assays. In addition, the investigation of RNP fragments, for example, by native gel electrophoresis, may reveal important structural information about a RNP. In this article, we describe procedures for RNP and RNA preparation, the oligonucleotide-targeted RNase H protection assay, and methods for the analysis of RNA and RNP cleavage products. As an example, we show oligonucleotide-targeted RNase H protection of the Trypanosoma brucei U1 small nuclear RNP.  相似文献   

7.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

8.
9.
10.
11.
12.
The structural requirements for DNA/RNA hybrids to be suitable substrates for RNase H1 are well described; however the tolerance level of this enzyme towards modifications that do not alter the duplex conformation is not clearly understood, especially with respect to the sense RNA strand. In order to investigate the molecular requirements of Escherichia coli RNase H1 (termed RNase H1 here) with respect to the sense RNA strand, we synthesized a series of oligonucleotides containing 2'-deoxy-2'-fluoro-beta-D-ribose (2'F-RNA) as a substitute for the natural beta-D-ribose sugars found in RNA. Our results from a series of RNase H1 binding and cleavage studies indicated that 2'F-RNA/DNA hybrids are not substrates of RNase H1 and ultimately led to the conclusion that the 2'-hydroxyl moiety of the RNA strand in a DNA/RNA hybrid is required for both binding and hydrolysis by RNase H1. Through the synthesis of a series of chimeric sense oligonucleotides of mixed RNA and 2'F-RNA composition, the gap requirements of RNase H1 within the sense strand were examined. Results from these studies showed that RNase H1 requires at least five or six natural RNA residues within the sense RNA strand of a hybrid substrate for both binding and hydrolysis. The RNase H1-mediated degradation patterns of these hybrids agree with previous suggestions on the processivity of RNase H1, mainly that the binding site is located 5' to the catalytic site with respect to the sense strand. They also suggest, however, that the binding and catalytic domains of RNase H1 might be closer than has been previously suggested. In addition to the above, physicochemical studies have revealed the thermal stabilities and relative conformations of these modified heteroduplexes under physiological conditions. These findings offer further insights into the physical binding and catalytic properties of the RNase H1-substrate interaction, and have been incorporated into a general model summarizing the mechanism of action of this unique enzyme.  相似文献   

13.
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme’s interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg2+ at the active site. A subset of amino acids engaged in contacts to RNA 2′-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme’s interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.  相似文献   

14.
RNases H participate in the replication and maintenance of genomic DNA. RNase H1 cleaves the RNA strand of RNA/DNA hybrids, and RNase H2 in addition hydrolyzes the RNA residue of RNA–DNA junctions. RNase H3 is structurally closely related to RNases H2, but its biochemical properties are similar to type 1 enzymes. Its unique N-terminal substrate-binding domain (N-domain) is related to TATA-binding protein. Here, we report the first crystal structure of RNase H3 in complex with its RNA/DNA substrate. Just like RNases H1, type 3 enzyme recognizes the 2′-OH groups of the RNA strand and detects the DNA strand by binding a phosphate group and inducing B-form conformation. Moreover, the N-domain recognizes RNA and DNA in a manner that is highly similar to the hybrid-binding domain of RNases H1. Our structure demonstrates a remarkable example of parallel evolution of the elements used in the specific recognition of RNA and DNA.  相似文献   

15.
16.
The major ribonuclease H from K562 human erythroleukemia cells has been purified more than 4,000-fold. This RNase H, now termed RNase H1, is an endoribonuclease whose products contain 5'-phosphoryl and 3'-hydroxyl termini. The enzyme has a native molecular weight of 89,000 based on its sedimentation and diffusion coefficients. Human RNase H1 has an absolute requirement for a divalent cation. Maximal activity is obtained with either 10 mM Mg2+, 5 mM Co2+, or 0.5 mM Mn2+. The pH optimum is between 8.0 and 8.5 in the presence of 10 mM Mg2+. The isoelectric point is 6.4. RNase H1 lacks double-stranded and single-stranded RNase and DNase activities, and it will not hydrolyze the DNA moiety of an RNA.DNA heteroduplex. Unlike the Escherichia coli enzyme, which requires a heteroduplex that contains at least four consecutive ribonucleotides for activity, human RNase H1 can hydrolyze a DNA.RNA.DNA/DNA heteroduplex that contains a single ribonucleotide. Cleavage occurs at the 5' phosphodiester of this residue. This substrate specificity suggests that human RNase H1 could play a role in ribonucleotide excision from genomic DNA during replication.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号