首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fragrances such as eugenol (4-allyl-2-methoxyphenol) and isoeugenol (2-methoxy-4-propenylphenol), naturally found in reasonable quantities in the essential oils of different spices, are not only common causes of contact dermatitis but also known for their antiproliferative actions. Previously, we found a cell cycle arrest and an arylhydrocarbon receptor (AhR)-mediated activation of cytochromes in immortalized keratinocytes (HaCaT) induced by both compounds. In the present study we investigated whether the cell cycle arrest of eugenol and isoeugenol is mediated by the AhR in HaCaT cells. Analysis of the cell cycle status by fluorescence-activated cell sorting (FACS) revealed an arrest of cells (32-34%) in the G0/G1 phase induced by both compounds. This was found in synchronized HaCaT cells, natural HaCaT, and siRNA AhR transfected HaCaT. The induced G0/G1 arrests were reduced in the presence of the highly selective AhR antagonist 3'-methoxy-4'-nitroflavone (MNF). In summary, these results, together with our previous findings that both compounds induce translocation of the AhR into the nucleus, provide good evidence that the effects of eugenol and isoeugenol in skin and keratinocytes are mediated by the AhR. Furthermore, these data suggest that the known growth suppressive effects of these compounds in some skin cells may be mediated by AhR interactions.  相似文献   

3.
Abstract While activation of the aryl hydrocarbon receptor (AhR) by exogenous ligands is well investigated, its physiological function is less understood. By extending research in AhR biology, evidence appeared that the receptor generally plays an important role in cell physiology. In keratinocytes, little is known about endogenous functions of the AhR. In order to expand this knowledge, we analyzed the impact of AhR knockdown on cell cycle progression in HaCaT cells and showed that proliferation of siAhR HaCaT cells was significantly decreased. In line with that result, western blot analysis revealed that protein level of the cyclin dependent kinase inhibitor p27(KIP1) was increased, whereas protein level of the cyclin dependent kinase (CDK) 2 was reduced. CDK4 and CDK6 protein levels remained unchanged, whereas protein level of the retinoblastoma protein (pRB) was reduced. By measuring ethoxyresorufin-O-deethylase (EROD) activity we showed that endogenous cytochrome P450 1 (CYP1), especially CYP1A1 is required for normal cell cycle in HaCaT cells, as well. To the best of our knowledge, we provide evidence for the first time in human skin cells, that in the absence of exogenous ligands, the AhR promotes cell cycle progression in HaCaT cells and one can speculate that this is the physiological function of this receptor in keratinocytes.  相似文献   

4.
Activation of the aryl hydrocarbon receptor (AhR) by TCDD may lead to the induction of proinflammatory cytokines in various cell types and organs such as liver leading to active chronic inflammation. Here we studied the expression of the chemokines keratinocyte chemoattractant (KC) and monocyte chemoattractant protein 1 (MCP-1) in different organs of mice after exposure to TCDD. TCDD exposure led to an early and clear induction of KC in liver and spleen on day 1 which was sustained over a period of 10 days. The level of MCP-1 mRNA was induced by TCDD on day 1 in spleen, lung, kidney, and liver, which was further increased at day 7. Increase of KC and MCP-1 at day 7 in liver, thymus, kidney, adipose, and heart was associated with elevated levels of the macrophage marker F4/80, indicating the infiltration of macrophages in these organs. Induction of KC requires a functional AhR since mice with a mutation in the AhR nuclear localization domain (AhR(nls)) were found to be resistant to TCDD-induced expression of KC. These results are the first showing the induction of the chemokines KC and MCP-1 in multiple organs of mice associated with an increase of the macrophage marker F4/80 indicating the involvement in TCDD's inflammatory response like infiltration of macrophages.  相似文献   

5.
Cross-talk between nuclear receptors involved in the control of drug metabolism is being increasingly recognised as a source of drug side effects. Omeprazole is a well known activator of the aryl hydrocarbon receptor (AhR). We investigated the regulation of AhR by omeprazole-sulphide, a degradation metabolite of omeprazole, using CYP1A mRNA induction, reporter gene assay, receptor DNA binding, ligand binding, nuclear translocation, trypsin digests, and drug metabolism analysis in mouse Hepa-1c1c7, human HepG2 cells and primary human hepatocytes. Omeprazole-sulphide is a pure antagonist of AhR in Hepa-1c1c7 and HepG2 hepatoma cell lines. In Hepa-1c1c7 cells, omeprazole-sulphide is a ligand of AhR, inhibits AhR activation to a DNA-binding form, induces a specific pattern of AhR trypsin digestion and inhibits AhR nuclear translocation and subsequent degradation in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, in highly differentiated primary human hepatocytes treated with rifampicin an agonist of the pregnane X receptor (PXR), omeprazole-sulphide behaves as an agonist of AhR. Inhibition of drug metabolizing enzymes by ketoconazole restores the antagonist effect of omeprazole-sulphide. Metabolic LC/MS analysis reveals that omeprazole-sulphide (AhR antagonist) is efficiently converted to omeprazole (AhR activator) by cytochrome P450 CYP3A4, a target gene of PXR, in primary human hepatocytes but not in hepatoma cells in which PXR is not expressed. This report provides the first evidence for a cross-talk between PXR/CYP3A4 and AhR. In addition, it clearly shows that conclusions drawn from experiments carried out in cell lines may lead to erroneous in vivo predictions in man.  相似文献   

6.
7.
8.
Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged and steroid-damaged skin.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ligand for the ubiquitous, intracellular aryl hydrocarbon receptor (AhR), up-regulates the actin-modulating protein adseverin in mouse lymphoid tissues, a response that may be correlated to the immunotoxicity of TCDD. Here, by using chimeric mice with TCDD-responsive (AhR(+/+)) hematopoietic cells and TCDD-unresponsive (AhR(minus sign/minus sign)) thymic stroma, or the reverse, we show that TCDD-induced expression of adseverin in thymus is dependent on AhR expression in hematopoietic cells but not in stroma. The use of fetal thymic organ cultures also indicates that TCDD-induced expression of adseverin is confined to the thymocytes. The thymic stroma showed no induction of adseverin expression after TCDD exposure, although TCDD clearly activated the AhR in these cells, as indicated by the induction of CYP1A1. Adseverin was not induced in the thymus of normal adult C57BL/6 mice exposed to beta-estradiol or dexamethasone, two other agents, which also cause thymic atrophy. This further supports that adseverin induction is a specific gene regulatory effect by TCDD on thymocytes.  相似文献   

10.
11.
The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E. Hahn, W.M. Westler, R.R. Sicinski, H.F. DeLuca, Proc. Natl. Acad. Sci. USA 99 (2002) 14694-14699]. We have synthesized ITE and [(3)H]ITE and further evaluated its AhR activity in several in vitro and in vivo assays in comparison with the toxic ligand, TCDD. AhR in Hepa1c1c7 cell cytosol bound [(3)H]ITE with high affinity and the AhR.ITE complex formed in vitro bound dioxin response element (DRE) oligonucleotide as potently as TCDD.AhR. In cells treated with ITE, nuclear translocation of AhR, and induction of CYP1A1 protein and of a DRE-dependent luciferase reporter gene were observed. ITE administered to pregnant DRE-LacZ transgenic mice activated fetal AhR, observed as X-gal staining in the same sites as in TCDD-treated mice. However, unlike TCDD, ITE did not induce cleft palate or hydronephrosis. TCDD but not ITE induced thymic atrophy in young adult mice, but both ITE and TCDD caused similar loss of cells and alterations of cell profiles in cultured fetal thymi. These data demonstrate that ITE is a potent AhR agonist in cell extracts, cultured cells, and intact animals, but does not cause the toxicity associated with the more stable xenobiotic ligand, TCDD.  相似文献   

12.
13.
In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[a]pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by β-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure.  相似文献   

14.
We report here a novel observation that 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) induced predominantly cytochrome P4501A1 (CYP1A1) in rat hepatocytes and predominantly CYP1A2 in human hepatocytes. As part of our research program to evaluate species-differences in response to CYP inducers, we studied the effects of TCDD on CYP1A activity, protein, and gene expression in primary cultures of rat and human hepatocytes. TCDD was found to induce CYP1A activity, measured as ethoxyresorufin-O-deethylase (EROD) activity, in both rat and human hepatocytes. TCDD induction of EROD activity in human hepatocytes (2-5 fold of concurrent solvent control), was significantly lower than that found in rat hepatocytes ( 20-fold of concurrent solvent control). Two structural analogs of TCDD, 2,3,7,8-tetrachlorodibenzofuran (TCDF) and 6-nitro-1,3,8-trichlorodibenzofuran (6-NCDF), were also evaluated. As observed for TCDD, human hepatocytes consistently showed a lower response than rat hepatocytes. As most TCDD-related effects are believed to be mediated via binding of the TCDD-Ah receptor (AhR) complex to DNA, nuclear AhR levels were measured in rat and human hepatocytes after TCDD treatment. We found that the nuclear AhR levels in TCDD-treated rat hepatocytes were approximately 4 times higher than found in TCDD-treated human hepatocytes. However, the estimated binding affinity of [3H]TCDD to nuclear AhR from rat hepatocytes was similar. The species difference in response to TCDD was further evaluated by analysis of CYP1A1 and CYP1A2 mRNA levels using Northern analysis, and P4501A1 and 1A2 protein levels using Western immunoblotting. Results showed that, at both gene expression and protein levels, TCDD induced predominantly CYP1A1 in rat hepatocytes and CYP1A2 in human hepatocytes.  相似文献   

15.
16.
17.
18.
19.
20.
We delineate a mechanism by which dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD)-mediated formation of the aryl hydrocarbon receptor (AhR) DNA binding complex is disrupted by a single mutation at the conserved AhR tyrosine 9. Replacement of tyrosine 9 with the structurally conservative phenylalanine (AhRY9F) abolished binding to dioxin response element (DRE) D, E, and A and abrogated DRE-driven gene induction mediated by the AhR with no effect on TCDD binding, TCDD-induced nuclear localization, or ARNT heterodimerization. The speculated role for phosphorylation at tyrosine 9 was also examined. Anti-phosphotyrosine immunoblotting could not detect a major difference between the AhRY9F mutant and wild-type AhR, but a basic isoelectric point shift was detected by two-dimensional gel electrophoresis of AhRY9F. However, an antibody raised to recognize only phosphorylated tyrosine 9 (anti-AhRpY9) confirmed that AhR tyrosine 9 is not a phosphorylated residue required for DRE binding. Kinase assays using synthetic peptides corresponding to the wild-type and mutant AhR residues 1-23 demonstrated that a tyrosine at position 9 is important for substrate recognition at serine(s)/threonine(s) within this sequence by purified protein kinase C (PKC). Also, compared with AhRY9F, immunopurified full-length wild-type receptor was more rapidly phosphorylated by PKC. Furthermore, co-treatment of AhR-deficient cells that expressed AhRY9F and a DRE-driven luciferase construct with phorbol 12-myristate 13-acetate and TCDD resulted in a 30% increase in luciferase activity compared with AhRY9F treated with TCDD alone. Overall, AhR tyrosine 9, which is not a phosphorylated residue itself but is required for DNA binding, appears to play a crucial role in AhR activity by permitting proper phosphorylation of the AhR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号