首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene transfer studies have shown that estrogen regulation of specific genes is mediated by estrogen response elements (ERE). We report that binding of the estrogen receptor to the ERE can be detected by a gel retardation (band shift) assay. This binding interaction was highly sequence and receptor specific. Methylation interference analysis showed that the ERE contact sites of estrogen receptor displayed a perfect twofold rotational symmetry. This is compatible with estrogen receptor binding to the ERE as a head-to-head dimer.  相似文献   

3.
4.
5.
Bovine estrogen receptor (ER) was purified to near homogeneity by estrogen response element (ERE) affinity chromatography, and its ERE binding ability was measured in vitro. Highly purified ER bound EREs with reduced affinity compared to partially purified ER. Partially purified ER contained hsp70, but highly purified ER did not. We examined whether addition of purified recombinant human hsp70 or purified bovine hsp70 would restore the higher ERE binding affinity, stoichiometry, and ligand retention detected with partially purified receptor and how hsp70 affected the rate of ER-ERE association and dissociation. ER-ERE binding was not affected by antibodies to either constitutive or induced forms of hsp70, regardless of ER purity. Addition of purified hsp70, with or without ATP and Mg2+, did not affect the association or dissociation rates of highly purified liganded ER binding to ERE. hsp70 Did not alter the total amount of ER-ERE complex formed. Similarly, hsp70 did not affect the rate of [3H]estradiol (E2) or [3H]4-hydroxytamoxifen (4-OHT) ligand dissociation from ER in the presence or absence of EREs. These data contrast with a report showing that maximal ERE binding by highly purified recombinant human ER required hsp70. We conclude that ER, purified from a physiological source, i.e., calf uterus, does not require hsp70 for maximal ER-ERE binding in vitro. Additionally, once ER is activated and bound by ligand, the receptor assumes its proper tertiary structure, and hsp70 does not impact ER ligand binding domain conformation.  相似文献   

6.
7.
Previous studies used the gel retardation assay to examine the binding of the mouse estrogen receptor (ER) to the estrogen-responsive element (ERE) from the vitellogenin A2 gene (VitA2ERE). Multiple specific complexes were formed when the ER was bound to various estrogen agonists or antagonists, or in the absence of bound hormone. The ERE from the human PS2 gene, which varies from the consensus ERE by one base change in the right arm, was used in this study to determine the effect of DNA sequence on ER-ERE interaction with various ligand-receptor complexes. Partially purified ligand-free soluble ER showed a 3-fold lower affinity for the PS2ERE than for the VitA2ERE, suggesting a possible influence of the imperfect DNA sequence on certain binding interactions. However, multiple complexes of similar affinity were formed with the PS2 sequence by nuclear ER regardless of the agonist or antagonist bound. In gel retardation experiments, antagonist (LY117018) nuclear ER complexes bound to either PS2 or VitA2ERE migrated more slowly than agonist complexes, indicating that the slower migrating form of the complex was not due to the DNA sequence. Interestingly, soluble ER bound by LY 117018 did not produce this decreased mobility complex, suggesting that it was specific to the nuclear form of the ER antagonist complex. Receptor activation has been linked with exposure to increased temperature, resulting in an ER form that has an increased affinity for DNA. The binding of molybdate-stabilized nonactivated 8S ER to VitA2ERE was studied to determine the effect of temperature on ER binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
11.
Luedtke NW  Liu Q  Tor Y 《Biochemistry》2003,42(39):11391-11403
Semisynthetic aminoglycoside derivatives may provide a means to selectively target viral RNA sites, including the HIV-1 Rev response element (RRE). The design, synthesis, and evaluation of derivatives based upon neomycin B, kanamycin A, and tobramycin conjugates of 9-aminoacridine are presented. To evaluate the importance of the acridine moiety, a series of dimeric aminoglycosides as well as unmodified "monomeric" aminoglycosides have also been evaluated for their nucleic acid affinity and specificity. Fluorescence-based binding assays that use ethidium bromide or Rev peptide displacement are used to quantify the affinities of these compounds to various nucleic acids, including the RRE, tRNA, and duplex DNA. All the modified aminoglycosides exhibit a high affinity for the Rev binding site on the RRE (K(d) 相似文献   

12.
Lisse TS  Hewison M  Adams JS 《Steroids》2011,76(4):331-339
Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as “vitamin D or estrogen response element-binding proteins”, behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements.  相似文献   

13.
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA–protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein–protein and RNA–protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.  相似文献   

14.
In order to better understand the structural requirements for effective high affinity binding of estrogens and antiestrogens by the human estrogen receptor (ER), a comparative study was undertaken in which we examined: 1) native ER from the MCF-7 ER-positive human breast cancer cell line; 2) full length ER expressed in yeast; 3) the ER hormone binding domain (amino acid residues 302-595) expressed in yeast; 4) a bacterially expressed protein A fusion product encoding a truncated ER (amino acid residues 240-595); and 5) a synthetic peptide encompassing amino acids 510-551 of the ER. The binding parameters studied included affinity, kinetics, structural specificity for ligands, and stability. Full length ER expressed in yeast was very similar to the MCF-7 ER in its affinity [dissociation constant (Kd), 0.35 +/- 0.05 nM], dissociation rate (t1/2, 3-4 h at 25 C), and structural specificity for both reversible and covalently attaching affinity ligands. While the truncated ER expressed in yeast was similar to MCF-7 ER in its specificity of ligand binding, it showed a slightly reduced affinity for estradiol (Kd, 1.00 +/- 0.17 nM). The bacterially expressed ER also had a lower affinity for estradiol (Kd, 1.49 +/- 0.16 nM), which may be due in part to an increase in the dissociation rate (t1/2, 0.5 h at 25 C). The attachment of covalent affinity ligands and structural specificity for a variety of reversible ligands was comparable in the bacterially expressed ER to that observed for the receptors expressed in MCF-7 cells and yeast.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.  相似文献   

16.
A receptor uniquely found on the surface of rat Kupffer cells was shown previously to bind oligosaccharides terminating in galactose, N-acetylgalactosamine, and fucose. To analyze further the binding specificity of the receptor, receptor-mediated adhesion of transfected COS cells to immobilized glycolipids of known structure was measured. The glycolipid Gb4Cer (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) was the best ligand. Gb5Cer (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) and LacCer (Gal beta 1-4Glc beta 1Cer) bound more weakly (five times less than Gb4Cer) and Gb3Cer (Gal alpha 1-4Gal beta 1-4Glc beta 1Cer), and g3Cer(GalNAc beta 1-4Gal beta 1-4Glc beta 1Cer) bound even more weakly (60 times less than Gb4Cer). Gangliosides did not support adhesion of transfected cells. The adhesion of COS cells transfected with plasmids encoding variants of the receptor was also examined. In each variant, either tryptophan 498 or 523, which are conserved in most C-type lectins, was replaced by one of several amino acids. Variants that retained binding activity had the same specificity as the normal receptor. Differences between variants were noted, however, in maximal levels of adhesion and these differences correlated with altered expression of the receptor variants in COS cells.  相似文献   

17.
18.
The relative binding affinity (RBA) of diethylstilbestrol (DES) was determined in nuclear fractions of the rat uterus. DES displayed a two- to threefold greater affinity (RBA = 245 +/- 36) than estradiol (RBA = 100) for nuclear E receptor. The RBA of DES to nuclear E receptor was lowered significantly in the presence of rat serum (43 +/- 1) or human serum (52 +/- 7). Dilution of human serum resulted in a progressive increase in the RBA of DES which approached that observed in the absence of serum. Addition of purified human serum albumin mimicked the decrease in RBA of DES that was observed with serum. The IC50 of estradiol was not changed in the presence of either rat serum or albumin. These data show that DES possesses a greater affinity for nuclear E receptor than estradiol and that serum albumin can modulate DES binding to uterine E receptor.  相似文献   

19.
Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1 x 10(7) M-1 to 2.0 x 10(8) M-1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0 x 10(8) M-1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites-(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10-100 fold higher drug concentrations to disrupt the CEN11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383-392, 1984; Marx and Denial, Molecular Basis of Cancer 172B, 65-75 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.  相似文献   

20.
Two steroid binding states of an estrogen receptor each with different equilibrium constants (Kd values) Rx (Kd = 0.06 nM) and Ry (Kd = 0.8 nM) have been identified and characterized in the hen and estrogen-stimulated chick oviduct. A third nonestrogen binding form of the receptor, designated Rnb, is now described which exists in short-term estrogen withdrawn chick oviduct cytosol. A model is presented in which the receptor can be interconverted between the three states. The interconversion is monitored by Scatchard analysis, sucrose density gradient analysis, and affinity labeling using [3H]tamoxifen aziridine followed by receptor purification with estrogen receptor monoclonal antibody affinity chromatography and sodium dodecyl sulfate-gel electrophoresis. The results are consistent with each state existing in different conformations having a common molecular weight of approximately 66,000. This paper defines the conditions and nucleotide requirements for the Rnb to Ry conversion. The conversion to the steroid binding form is induced by ATP, ADP, and GTP. Cyclic nucleotides are ineffective. There is a specific requirement for Mg2+; neither Ca2+ nor Mn2+ will substitute. Nonhydrolyzable nucleotide analogues were tested for their relative efficiency to convert Rnb to Ry. Conversion occurred with alpha,beta-methylene adenosine triphosphate, but beta,gamma-methylene adenosine triphosphate and alpha,beta-methylene adenosine diphosphate were inert. Thus, activation of Rnb to form Ry appears to be catalyzed by an event requiring the loss of the terminal phosphoryl moiety from either ATP or ADP. Receptor derived from conversion of Rnb to Ry has the same physical properties as native Ry. Activation of Rnb is to Ry specifically; no increase in the Rx form of estrogen receptor was ever observed. The accompanying paper similarly describes the Rx to Ry conversion. Since these data also explain observations made with glucocorticoid and with epidermal growth factor receptors, it is speculated that the receptor interconversion model may have general application to hormone action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号