首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of motoneurons in the lumbar spinal cord (spinal segments 8-10) of the clawed toad, Xenopus laevis, was studied with the horseradish peroxidase technique. In a total of 13 different hind limb muscles this tracer was applied in a slow-release gel. Motoneurons innervating a particular hind limb muscle were clustered in longitudinally arranged motor pools. Motor pools of different muscles did show considerable overlap both in the rostrocaudal and transverse plane. But, the various motor pools clearly show a somatotopic organization of motoneurons even in such a condensed lumbar spinal cord as in Xenopus laevis. Motoneurons innervating more distally positioned muscles are generally found in more caudal segments, while proximal muscles (with the exception of the m. adductor magnus) are supplied by motoneurons more or less throughout the lumbar enlargement. Flexor muscles usually are innervated by motoneurons situated ventrolaterally in the ventral horn, extensor muscles by dorsomedially found motoneurons. This pattern is particularly apparent for proximal (thigh) muscles, less so for more distal (shank and foot) muscles. The present data are in keeping with those obtained with the retrograde cell degeneration technique in ranid frogs and are consistent with observations in other tetrapods, although a more clear separation of motor pools is evident in "higher" vertebrates such as birds and mammals.  相似文献   

2.
The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and “adductor mandibulae” is preferred to “levator mandibulae” to align with usage in other gnathostomes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Limb muscles separate from one another in a complex but highly stereotyped sequence and spatial pattern. The process of separation is characterized by the progression of a region of increased extracellular space, the cleavage zone, along the proximodistal axis between the individual muscle anlagen. We analyzed ultrastructurally the muscles and cleavage zone during the separation of two representative muscles, the developing sartorius and iliotibialis in the chick thigh, to establish an accurate baseline for an analysis of the mechanisms of separation. Comparisons of the morphology and distribution of cells before and after separation show no evidence that muscles became separated by the massive influx of an exterior cell population; if populations invade the cleavage zone, they are small. We do find characteristic transitions within the cell population of the cleavage zone in situ that could accomplish cleavage without invoking massive cell movements. These progressive transitions within the cleavage zone include a loss of close cell-cell interactions, an increase in extracellular space, the assumption of a more stellate morphology by mesenchyme cells, and a gradual alteration in the composition of the extracellular matrix from one typical of early muscle to one typical of loose connective tissue. Myotubes do differentiate between the incipient muscles, ruling out the possibility that the location where muscles will separate is defined by sites where myotubes fail to differentiate. Instead, the myotubes in the cleavage zone gradually diminish in number and appear to be specifically recognized and removed from the cleavage zone by phagocytes. We suggest that the transitions within the cleavage zone, including the loss of muscle cells, are a result of the progressive differentiation of loose connective tissue. If so, then the spatial pattern and process of cleavage is a consequence of spatially programmed cell differentiation.  相似文献   

4.
5.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

6.
The relative length of the ischium varies according to the species' locomotory behavior, and is useful in estimation of the total relative weight of all the muscles that arise from it. There are three groups of muscles which are involved in thigh extension. Each of these muscles have other function(s) as well. When thigh extending muscles are well developed in a locomotory category or species, it is not only as a result of a response to their function of thigh extension, but also their other functions. In the macaques and guereza, the relative weight of the thigh extending muscles is high due to the massive hamstrings, particularly thebiceps femoris, and the ischium is relatively long. In the chimpanzee, because theadductor magnus muscle is well developed, the relative weight of the thigh extending muscles is high, and the ischium relatively long. In the gibbon, the relative weight of the thigh extending muscles is medium due to the feeble hamstrings and the heavyadductor magnus muscle, and the ischium is of medium relative length. The relative weight of the thigh extending muscles in the slow loris is close to medium with none of the muscles being more dominant than the others, and having ischium of somewhat medium relative length. In the grand and lesser bush babies, the relative weight of the thigh extending muscles and the relative length of the ischium is medium and small respectively, with none of the groups dominating the others, although they, particularly the lesser bush baby, have a massivesemimembranosus. Discussing the ischium in relation with the hamstring muscles alone is not satisfactory, since the ischium serves the thigh extending muscles, includingadductor magnus andquadratus femoris ventralis, attached on it as a lever. A long lever, in these cases the ischium, is an indication of the relatively heavy muscles that originate from it.  相似文献   

7.
Role of nerve and muscle factors in the development of rat muscle spindles   总被引:2,自引:0,他引:2  
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

8.
9.
On the basis of 44 hindlimbs of 14 male and 14 female crab-eating monkeys (Macaca fascicularis), the morphology of the adductor muscles of the thigh was described and some functional indices were calculated. The results obtained from this study agreed generally with those of otherMacaca species reported by various authors. For the classification and nomenclature of the adductors, the criteria proposed byUhlmann (1967, 1968) was well adapted to the crab-eating monkey. The adductors comprise the m. gracilis, m. pectineus, m. adductor longus, pars longa and pars brevis of m. adductor brevis, pars lata and pars minima of m. adductor magnus and m. obturatorius externus. In males, the adductors are generally inserted further down the femur, and the insertions of pars brevis of the m. adductor brevis and pars minima of the m. adductor magnus have longer attachments to the femur than in females. The arrangement of each adductor muscle and of each fasciculus of a thigh muscle may invoke a principle of organization.  相似文献   

10.
11.
Regions of lower cell density, called cleavage zones, emerge within the dorsal and ventral muscle masses in the vertebrate limb to separate distinct muscles. In the chick thigh, the stereotyped patterns of separation have been broadly outlined, but differences in interpretation exist because no criteria for separation have been defined, and the tissues of the limb are indistinct early in development. We have examined the cleavage process using modern applications of light microscopy and immunocytochemistry to completely detail the spatial and temporal progression of cleavage in stage 27-32 embryos. We find that each muscle has a complex but characteristic pattern of separation along the proximodistal axis. The complex pattern of separation is not related to the positions of muscles within the thigh, locations of blood vessels, activity patterns of muscles, or innervation patterns. The initial separation patterns are more straightforward than later separations and may be of value in determining the phylogenetic history of limb muscles since the same patterns are common to many tetrapods. Our detailed documentation clarifies the ontogeny of the thigh musculature and reveals more complex separation patterns between muscles than previously described.  相似文献   

12.
13.
The separated shell plates with the rearranged musculature (adductor muscle) is a novelty for bivalves. Despite its importance in the bivalve bodyplan, the development of the anterior adductor muscle remains unresolved. In this study, we investigate the myogenesis of the bivalve species Septifer virgatus to reveal the developmental origin of the larval muscles in bivalves, focusing on the anterior adductor muscle. We observed that larval retractor muscles are differentiated from the ectomesoderm in bivalves, and that the anterior adductor muscles are derived from primordial larval retractor muscles via segregation of the myoblast during the veliger larval stage. Through the comparative study of myogenesis in bivalves and its related taxa, gastropods, we found that both species possess myoblasts that emerge bilaterally and later meet dorsally. We hypothesize that these myoblasts, which are a major component of the main larval retractor in limpets, are homologous to the anterior adductor muscle in bivalves. These observations imply that the anterior adductor muscle of bivalves evolved as a novel muscle by modifying the attachment sites of an existing muscle.  相似文献   

14.
G Bogusch 《Acta anatomica》1983,116(1):14-25
The development of muscles from the dorsal side of the forelegs from 13- to 21-day-old rat embryos was investigated under a light microscope. The muscle blastemata and individual muscles were stained in situ with the cholinesterase technique. The first muscle blastemata are visible on the early day 13. It appears that mainly myotubes are stained. The antebrachial and brachial extensor muscles form separated anlagen which connect on the late day 13 in the proximal region of the extensor carpi ulnaris muscle. The individualization of the muscles in a muscle blastema takes place on days 13 and 14. On day 15 all extensor muscles are visible. However, at this time the inserting points of some of these muscles are not yet visible after staining with alcian blue. On the early day 16 the motor end-plates are conspicuous. Due to the content of unspecific cholinesterase in rat embryos the tendons are also stained on day 16. Muscles and tendons remain stainable until birth. In addition to the muscles also the nerves, especially the epifascial nerves, stain very well with the acetylcholinesterase reaction.  相似文献   

15.
The neotropical loricarioid catfishes include six families, the most species‐rich of which are the Callichthyidae and the Loricariidae. Loricariidae (suckermouth armoured catfishes) have a highly specialized head morphology, including an exceptionally large number of muscles derived from the adductor mandibulae complex and the adductor arcus palatini. Terminology of these muscles varies among the literature, and no data exist on their ontogenetic origin. A detailed examination of the ontogeny of both a callichthyid and a loricariid representative now reveals the identity of the jaw and maxillary barbel musculature, and supports new hypotheses concerning homologies. The adductor mandibulae muscle itself is homologous to the A1‐OST and A3′ of basal catfishes, and the A3′ has given rise to the newly evolved loricariid retractor veli as well. The A2 and A3″ have resulted in the retractor tentaculi of Callichthyidae and the retractor premaxillae of Loricariidae. Thus, these two muscles are shown to be homologous. In Loricariidae, the extensor tentaculi consists of two separate muscles inserting on the autopalatine, and evidence is given on the evolutionary origin of the loricariid levator tentaculi (previously and erroneously known as retractor tentaculi) from the extensor tentaculi, and not the adductor mandibulae complex. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 76–96.  相似文献   

16.
The lateral and ventral external surfaces of the third and fourth abdominal segments were described and muscle attachments were correlated with surface indentations of the larva. The proleg of this species has a symmetrical planta with a complete circle of crochets. Furthermore, it differs externally from the grasping type of proleg in having a largely membranous coxal region confluent with the body wall, and a relatively large subcoxal lobe. The body wall musculature and innervation of the third and fourth abdominal segments are similar in many respects to those described for other lepidopteran larvae to which they are here compared, but differ from most because of the simpler structure of the prolegs which lack highly developed adductor muscles. Like most muscles innervated by the ventral nerve, the principal plantar retractors of these two segments cease to function in the first day of the pupal stage and have completely degenerated by the forty-fifth hour of pupal life. The ventral nerve retains its four primary branches in the adult, in which many smaller rami can be traced to the cuticle and to the neoblastic body wall muscles.  相似文献   

17.
The African Clawed Toad, Xenopus laevis, has been a major vertebrate model organism for developmental studies for half a century. Because most studies have focused on the early stages of development, this has had the effect that many aspects of organogenesis and later development remain relatively poorly known in this species. In particular, little is known about cranial muscle development even at the level of morphology and histological differentiation of muscle anlagen and muscle fibers. In this study, we document the morphogenesis and histological differentiation of cranial muscles in X. laevis. We provide a detailed account of the timing of development for each of the cranial muscles, and also describe a new muscle, the m. transversus anterior. The cranial musculature of X. laevis larvae generally develops in a rostrocaudal sequence. The first muscles to differentiate are the extrinsic eye muscles. Muscles of the mandibular and hyoid arches develop almost simultaneously, and are followed by the muscles of the branchial arches and the larynx, and by the mm. geniohyoideus and rectus cervicis. Despite the fact that differentiation starts at different stages in the different muscles, most are fully developed at Stage 14. These baseline data on the timing of muscle differentiation in the X. laevis can serve as a foundation for comparative studies of heterochronic changes in cranial muscle development in frogs and other lissamphibians.  相似文献   

18.
Young GC 《Biology letters》2008,4(1):110-114
Exceptional braincase preservation in some Devonian placoderm fishes permits interpretation of muscles and cranial nerves controlling eye movement. Placoderms are the only jawed vertebrates with anterior/posterior obliques as in the jawless lamprey, but with the same function as the superior/inferior obliques of other gnathostomes. Evidence of up to seven extraocular muscles suggests that this may be the primitive number for jawed vertebrates. Two muscles innervated by cranial nerve 6 suggest homologies with lampreys and tetrapods. If the extra muscle acquired by gnathostomes was the internal rectus, Devonian fossils show that it had a similar insertion above and behind the eyestalk in both placoderms and basal osteichthyans.  相似文献   

19.
Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given.  相似文献   

20.
Seventeen new-born piglets of hybrid stock were tested for defects of neuromuscular transmission by stimulation electromyography (EMG). Nine of these displayed extreme symptoms of muscle weakness (splayleg), while the others were their clinically normal littermates. Muscles from four different functional groups were investigated, including the gastrocnemius, tibialis anterior, knee flexors and thigh adductors. Repetitive stimulation of muscle nerves at 3 Hz gave comparable peak-to-peak amplitudes of the EMG response in splayleg and control piglets (mean values from 5 to 10 mV). The lowest mean EMG response values at this stimulation frequency were found in splayleg adductor muscles of the thigh which were not, however significantly different from the controls. Higher frequencies of stimulation (30, 50 and 100 Hz), in general, led to a less pronounced decrease of EMG amplitude in splayleg piglet muscles than in the controls, with the exception of knee flexors. Neither splayleg nor control muscles exhibited post-activation exhaustion or post-tetanic potentiation. It is being concluded from these results that congenital myofibrillar hypoplasia is not primarily a myasthenia-like syndrome, but that either excitation-contraction coupling or the contractile mechanism itself are primarily affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号