首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-jump-induced absorption changes of bromocresol purple in chloroplast suspensions in the dark were studied. After a rapid rise in temperature (<10 μs), a slow absorbance decrease of bromocresol purple (t12 ≈ 0.2 s) following a fast absorbance decrease of chloroplasts and bromocresol purple (t12 < 1 ms) was observed. The slow absorbance decrease corresponds to acidification of the suspending medium, indicating H+ efflux from chloroplasts after the temperature jump. Nigericin and gramicidin D suppressed the slow absorbance change completely in the presence of 10 mM KCl, while valinomycin did not affect it. The fast absorbance change was not affected by the above ionophores. 3-(3,4-dichlorophenyl)-1,1-dimethylurea also diminished the slow absorbance change.  相似文献   

2.
In intact (type A) chloroplasts isolated from mesophyll protoplasts of maize (Zea mays L. convar. KSC 360) the flash-induced 515 nanometer absorbance change was much higher than in conventionally prepared (types B and C) chloroplasts. The 515 nanometer signal of type A chloroplasts exhibited a biphasic rise: the initial very fast rise (rise time «1 millisecond) was followed by a slow increase of absorbance (rise time 10 to 20 milliseconds). With decreasing degree of envelope retention the slow phase disappeared. Thus the biphasic rise of the flash-induced 515 nanometer absorbance change can be regarded as an attribute of intact chloroplasts.  相似文献   

3.
The absorbance change at 505 nm was used to monitor the kinetics of violaxanthin deepoxidation in isolated pea (Pisum sativum) chloroplasts under dark conditions at various pH values. In long-term measurements (65 min) a fast and a slow exponential component of the 505-nm absorbance change could be resolved. The fast rate constant was up to 10 times higher than the slow rate constant. The asymptote value of the fast kinetic component was twice that of the slow component. The pH dependency of the parameters of the fast kinetic component was analyzed from pH 5.2 to pH 7.0. It was found that the asymptote value dropped slightly with increasing pH. The rate constant was zero at pH values greater than 6.3 and showed maximum values at pH values less than 5.8. Hill plot analysis revealed a strong positive cooperativity for the pH dependency of the fast rate constant (Hill coefficient nH = 5.3). The results are discussed with respect to published activity curves of violaxanthin deepoxidation.  相似文献   

4.
The flash-induced P515 absorbance change in intact chloroplasts consists of a fast and a slow phase. There is disagreement in the literature over the origin of the slow phase. Here we argue that the flash-induced slow phase in P515 absorbance change is composed of two different components. One component is most probably due to the electrogenic Q-cycle associated with the cytochrome b/f complex. The second component has decay kinetics that are much slower than the electrogenic reactions. We suggest that the second component is due to a non-electrogenic reaction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DQH2 durohydroquinone - MV methylviologen - P515 Absorbance change at 518 nm  相似文献   

5.
Simultaneous measurements of electrical activity and light absorbance have been made on nerve cell bodies from Archidoris monteryensis injected with indicator dyes. pH indicators, phenol red and bromocresol purple, and arsenazo III, which under normal conditions is primarily a calcium indicator have been employed. Voltage clamp pulses which induced calcium influx caused an absorbance decrease of the pH dyes indicating an internal acidification. The onset of the pH drop lagged the onset of Ca2+ influx by 200-400 ms, and pH continued to decrease for several seconds after pulse termination which shut off Ca2+ influx. Trains of action potentials also produced an internal pH decrease. Recovery of the pH change required periods greater than 10 min. The magnitude of the pH change was largely unaffected by external pH in the range 6.8-8.4. The voltage dependence of the internal p/ change was similar to the voltage dependence of calcium influx determined by arsenazo III, and removal of calcium from the bathing saline eliminated the pH signal. In neurons injected with EGTA (1-5 mM), the activity- induced internal Ca2+ changes were reduced or eliminated, but the internal pH drop was increased severalfold in magnitude. After the injection of EGTA, voltage clamp pulses produced a decrease in arsenazo III absorbance instead of the normal increase. Under these conditions the dye was responding primarily to changes in internal pH. Injection of H+ caused a rise in internal free calcium. The pH buffering capacity of the neurons was measured using three different techniques: H+ injection, depressing intrinsic pH changes with a pH buffer, and a method employing the EGTA-calcium reaction. The first two methods gave similar measurements: 4-9 meq/unit pH per liter for pleural ganglion cells and 13-26 meq/unit pH per liter for pedal ganglion cells. The EGTA method gave significantly higher values (20-60 meq/unit pH per liter) and showed no difference between pleural and pedal neurons.  相似文献   

6.
Light-induced absorbance change at 515 nm in spinach chloroplastswas studied in the temperature range from –2?C to 27?C.Lowering of temperature had no marked effect on the extentsof initial "light-on" spike and the steady-state change overthe temperature range examined, whereas the rate of recoveryof the 515-nm change was significantly reduced at lower temperatures.Above 15?C, recovery of the 515-nm change after continuous illuminationshowed a first-order kinetics. In contrast, the recovery wascomposed of a fast and a slow phases at lower temperatures. The fast phase of the recovery of the 515-nm change was acceleratedby carbonyl cyanide m-chlorophenylhydrazone, valinomycin plusK+ or sodium tetraphenylboron, while the slow phase was completelyeliminated in glutaraldehyde-fixed chloroplasts. Light-inducedchange in absorbance at 546 nm, an indicator of structural changesof membrane, showed almost the same dependency on temperatureas the slow phase of the recovery of the 515-nm change. Theseresults suggest that not only electric field formation acrossthe thylakoid membrane but also structural or conformationalchanges in the membrane participate in the 515-nm absorbancechange observed under steady illumination. (Received July 5, 1976; )  相似文献   

7.
The difference spectroscopy technique has been utilized to investigate the temperature-induced spectral changes in mesophyll and bundle sheath chloroplasts of maize ( Zea mays L. cv. Ganga-5) in order to assess the role of different pigment-protein complexes in the manifestation of temperature effect on the chloroplast membranes. Cooling and heating of both mesophyll and bundle sheath chloroplasts resulted in absorbance difference (AA) bands at similar wavelengths but the degree of absorb-ance changes were significantly higher in bundle sheath chloroplasts. For example, upon cooling to 7-8°C, positive AA bands were observed at 440, 490 and 680 nm in mesophyll chloroplasts and at 440, 495–500 and 680 nm in bundle sheath chloroplasts but the absorbance change at 680 nm was ca 2% in mesophyll chloroplasts, whereas it was ca 5% in bundle sheath chloroplasts, which have a lower content of light-harvesting pigment-protein complex. The role of chlorophyll-protein complexes was further investigated by monitoring the temperature-induced spectral changes of mesophyll and bundle sheath chloroplasts isolated from lincomycin-treated maize plants where lincomycin selectively inhibits the biosynthesis of specific chlorophyll-protein complexes. Results indicated that depletion of certain pigment-protein complexes in mesophyll chloroplasts made them more susceptible (a ca 4% vs ca 2% absorbance change upon cooling and a ca 6% vs ca 4% absorbance change upon heating) and less tolerant to temperature variation (a 76% vs 39% reversibility during ambient→Cooling→ambient temperature cycle). The data indicate that pigment-protein complexes play a significant role in protecting the chloroplast membranes against temperature variation.  相似文献   

8.
Structural and functional stability of isolated intact chloroplasts   总被引:1,自引:0,他引:1  
The effect of in vitro ageing on the ultrastructure, electron transport, thermoluminescence and flash-induced 515 nm absorbance change of isolated intact (type A) chloroplasts compared with non-intact (types B and C) chloroplasts was studied.When stored in the dark for 18 h at 5°C, the structural characteristics of intact and non-intact chloroplasts were only slightly altered. The most conspicuous difference between the two was in the coupling of the electron transport which was tighter and more stable in intact chloroplasts. Under dark-storage the activity of PS 2* decreased and the -20°C peak of thermoluminescence increased at the expense of the emission at +25°C. These changes were less pronounced in the intact chloroplasts. PS 1 activity and the flash-induced 515 nm absorbance change were not affected by dark-storage.When kept in the light (80 W m-2 (400–700 nm) for 1 h at 5°C), the thylakoid system of chloroplasts rapidly became disorganized. Although the initial activity of electron transport was much higher in intact chloroplasts, after a short period of light-storage the linear electron transport and the electron transport around PS 2 decreased in both types of preparations to the same low level. These changes were accompanied by an overall decrease of the intensity of thermoluminescence. PS 1 was not inhibited by light-storage, while the flash-induced 515 nm absorbance change was virtually abolished both in preparations of intact and non-intact chloroplasts.The data show that in stored chloroplast preparations intactness cannot be estimated reliably either by the FeCy test or by inspection under the electron microscope. These tests should be cross-checked on the level and coupling of the electron transport.  相似文献   

9.
Dual effect of dibromothymoquinone ( DBMIB ), inhibitor and reducing agent at the donor side of Photosystem I, was investigated in isolated intact chloroplasts by flash-induced absorbance changes at 820 and 515 nm. We show that in the absence of other electron donors, rereduction of P700+ by DBMIB proceeds at a very low rate (half-time of approximately 10 s) Dual effect of DBMIB explains that the initial rise of electrochromic absorbance change induced by repetitive flashes is usually not diminished while the slow rise is fully inhibited by this compound.  相似文献   

10.
Stomatal conductance is coupled to leaf photosynthetic rate over a broad range of environmental conditions. We have investigated the extent to which chloroplasts in guard cells may contribute to this coupling through their photosynthetic activity. Guard cells were isolated by sonication of abaxial epidermal peels of Vicia faba. The electrochromic band shift of isolated guard cells was probed in vivo as a means of studying the electric field that is generated across the thylakoid membranes by photosynthetic electron transport and dissipated by photophosphorylation. Both guard cells and mesophyll cells exhibited fast and slow components in the formation of the flash-induced electrochromic change. The spectrum of electrochromic absorbance changes in guard cells was the same as in the leaf mesophyll and was typical of that observed in isolated chloroplasts. This observation indicates that electron transport and photophosphorylation occur in guard cell chloroplasts. Neither the fast nor the slow component of the absorbance change was observed in the presence of the uncoupler carbonylcyanide p-trifluoromethoxy-phenylhydrazone which confirms that the absorbance change was caused by the electric field across the thylakoid membranes. The magnitude of the fast rise was reduced by half in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Therefore, photosystem II is functional and roughly equal in concentration to photosystem I in guard cell chloroplasts. The slow rise was abolished by 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone indicating the involvement of the cytochrome b6/f complex in electron transport between the two photosystems. Relaxation of the absorbance change was irreversibly retarded in cells treated with the energy transfer inhibitor, N,N′-dicyclohexylcarbodiimide. The slowing of the rapid decay kinetics by N,N′-dicyclohexylcarbodiimide confirms that the electrical potential across the thyalkoid membrane is dissipated by photophosphorylation. These results show that guard cell chloroplasts conduct photosynthetic electron transport in a manner similar to that in mesophyll cells and provide the first evidence that photophosphorylation occurs in guard cells in vivo.  相似文献   

11.
J. Amesz  M.P.J. Pulles  B.R. Velthuys 《BBA》1973,325(3):472-482

1. 1. Spinach chloroplasts were stored in the dark for at least 1 h, rapidly cooled to −40 °C, and illuminated with continuous light or short saturating flashes. In agreement with the measurements of Joliot and Joliot, chloroplasts that had been preilluminated with one or two flashes just before cooling showed a less efficient increase in the yield of chlorophyll a fluorescence upon illumination at −40 °C than dark-adapted chloroplasts. The effect disappeared below −150 °C, but reappeared again upon warming to −40 °C. Little effect was seen at room temperature in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), added after the preillumination.

2. 2. Light-induced absorbance difference spectra at −40 °C in the region 500–560 nm indicated the participation of two components, the socalled 518-nm change (P518) and C-550. After preillumination with two flashes the absorbance change at 518 nm was smaller, and almost no C-550 was observed. After four flashes, the bands of C-550 were clearly visible again.

3. 3. The fluorescence increase and the absorbance change at 518 nm showed the same type of flash pattern with a minimum after the second and a maximum at the fourth flash. In the presence of 100 μM hydroxylamine, the fluorescence response was low after the fourth and high again after the sixth flash, which confirmed the hypothesis that the flash effect was related to the so-called S-state of the electron transport pathway from water to Photosystem 2.

4. 4. The kinetics of the light-induced absorbance changes were the same at each wavelength, and, apart from the size of the deflection, they were independent of preillumination. Flash experiments indicated that the absorbance changes were a one-quantum reaction. This was also true for the fluorescence increase in dark-adapted chloroplasts, but with preilluminated chloroplasts several flashes were needed to approximately saturate the fluorescence yield.

5. 5. The results are discussed in terms of a mechanism involving two electron donors and two electron acceptors for System 2 of photosynthesis.

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea  相似文献   


12.
The absorbance change at 515 nm induced by a short (7.6 µsec)light flash in spinach chloroplasts was studied at sub-roomtemperatures in relation to rapid H+ uptake into chloroplasts. Lowering of temperature caused a marked decrease in the rateof recovery of 515-nm absorbance change after a flash illumination.Initial rate of rapid H+ uptake, measured with absorbance changeof bromcresol purple (BCP), was also reduced at lower temperatures,in a parallel fashion. Half-recovery time of the absorbancechange at 515 nm and rise-time of the pH-indicating absorbanceincrease of BCP coincided well at each temperature studied.Values of the calculated activation energy for these two processeswere almost the same. The parallelism between the 515-nm absorbance change and therapid H+ uptake after a single flash illumination was also observedwhen the electric field decay and/or H+ translocation were acceleratedby ionophorous antibiotics, carbonylcyanide m-chlorophenylhydrazoneor phenazine methosulfate. From these results, it is suggestedthat the rapid H+ uptake into chloroplast is chemically coupledto electron transfer and at the same time diffusion- (or transport-)controlled. Membrane potential, reflected in the 515-nm absorbancechange is dissipated with the rapid H+ influx. A model for theelectron-transfer-coupled H+ translocation involving a plastosemiquinoneloop is presented. Dissipation of the illumination-formed inside-positivemembrane potential by the influx of H+ is explained by the model. (Received September 17, 1976; )  相似文献   

13.
The effects of dithiothreitol on absorbance changes at 505 and 515 nm in isolated lettuce chloroplasts were investigated. Dithiothreitol inhibited the ascorbate-dependent 505-nm change that is due to the de-epoxidation of violaxanthin to zeaxanthin. Dithiothreitol was effective for both light-induced de-epoxidation at pH 7 and dark de-epoxidation at pH 5. Titration of de-epoxidase activity with dithiothreitol resulted in complete inhibition at about 5 μmoles dithiothreitol per mg chlorophyll. Removal of dithiothreitol restored de-epoxidase activity. These results are consistent with the view that dithiothreitol inhibits violaxanthin de-epoxidation and the corresponding 505-nm change by reducing a disulfide that is required for de-epoxidase activity.

Dithiothreitol was effective in resolving absorbance changes due to violaxanthin de-epoxidation and other changes that were superimposed under some conditions. At 515 nm and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), phenazine methosulfate, and ascorbate, dithiothreitol inhibited the large, slow and irreversible change which was due to de-epoxidation but not the fast and reversible so-called 515-nm change. At 505 nm and under similar conditions, dithiothreitol revealed the presence of a slow reversible change in addition to the one from de-epoxidation. Results with dithiothreitol showed that the absorbance change at 505 nm in the presence of DCMU, 2,6-dichlorophenolindophenol and ascorbate was due entirely to de-epoxidation. Similarly, absorbance changes at 515 nm also appeared to be mainly from de-epoxidation but with the presence of a small transient change due to some other components. It is suggested that dithiothreitol may be useful in resolving complex light-induced absorbance changes in other photosynthetic systems as well as in enabling new studies on reversible absorbance changes in the 500-nm region.  相似文献   


14.
The inhibitory effect of antimycin A on the slow rise of the flash-induced electrochromic absorbance change was reinvestigated in intact chloroplasts isolated from pea leaves. It is show that in the absence of nigericin and +K at low repetition rates (<0.5 s?1) of the excitation flashes not only the slow (~ 10 ms) rise but also the initial (?1 ms) rise generated by photosystem 1 is inhibited by antimycin A.  相似文献   

15.
Shigeru Itoh  Shinji Morita 《BBA》1982,682(3):413-419
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed.  相似文献   

16.
Norio Murata  David C. Fork 《BBA》1971,245(2):356-364
Light-induced changes of absorbance were measured in Fraction 1 particles prepared from spinach chloroplasts according to a method developed by 6 that employs breakage of chloroplasts in the French pressure cell and centrifugation of the resulting fragments on a sucrose density gradient. Absorbance changes were measured in the presence of ascorbate and 2,3,5,6-tetramethyl-1,4-phenylenediamine as an electron donating system. In addition to the oxidation of P700 and cytochrome f, that was investigated in our previous study11, three other light-induced absorbance changes were observed; reduction of cytochrome b with a peak at 562 nm, the so-called 515-nm change showing an absorbance increase at 515 nm and a decrease at 480 nm, and a broad band of unknown absorbance increase covering wave-lengths from 490 to 570 nm. Uncouplers such as carbonylcyanide-m-chlorophenylhydrazone and gramicidin D inhibited the 515-nm change under continuous light and accelerated the dark decay of flash-light-induced change. The other broad absorbance change was insensitive to these inhibitors.  相似文献   

17.
Enzymes from thermophilic organisms often exhibit low activity at reduced temperature. To obtain a better understanding of this sluggishness, we have studied the reaction at 24 degrees C of the carbamate kinase (CK) from the hyperthermophile Pyrococcus furiosus. This enzyme is much slower at low temperature than is the CK from the mesophile Enterococcus faecalis. X-ray structures demonstrated bound ADP (even when no nucleotide was added) with the hyperthermophilic but not with the mesophilic CK. We use centrifugal gel filtration, rate of dialysis and pulse-chase experiments to demonstrate that the pyrococcal enzyme, at 24 degrees C, binds ADP avidly (K(D) = 34 nM), that ADP dissociates from this complex with a t1/2 value of 2.4 s, and that ADP binding is very fast (kappa = 8.4 x 10(6) M(-1) x s(-1)). The high affinity, rather than restrictions to dissociation, explains the isolation of the pyrococcal enzyme as an ADP complex. Carbamoyl phosphate adds quickly to this complex, and ADP cannot dissociate from the resulting ternary complex, being that it is converted very slowly (t1/2 = 10.3 s) to ATP, which dissociates quickly (t1/2 < 2.4 s). The slow conversion is a part of the normal enzyme reaction and limits the rate of the reaction at 24 degrees C. Thus, the sluggishness of the enzyme at low temperature is not due to slow substrate binding or product release but to the very slow rate of isomerization between enzyme-bound substrates and products. Probably the catalysis of the phosphoryl group transfer is less efficient at low temperature, as suggested by structural data showing that Lys131 is improperly positioned to assist the transfer.  相似文献   

18.
The viability of using a cell-free perfusate in a rat hindlimb preparation to assess skeletal muscle glycogenesis was investigated. A perfusate containing 10 mM glucose and 10 microCi (1 Ci = 37 GBq) of D-[5-3H]glucose was recycled for a 60-min period. In agreement with other studies using more complex media, oxygen uptake of the preparation indicated adequate tissue oxygenation (8 mumol.min-1.g-1). Skeletal muscle fiber type heterogeneity in basal glycogen synthesis from glucose was shown (slow oxidative greater than fast oxidative glycolytic greater than fast glycolytic fibres). Insulin (4.2 mU/mL) markedly stimulated glycogenesis from D-[5-3H]glucose in the soleus (slow oxidative fiber), red gastrocnemius (fast oxidative glycolytic fiber), and white gastrocnemius muscles (p less than 0.05). A recent report indicates that tissue edema in this preparation did not affect insulin responsiveness of the tissue. In contrast, our observations indicate that glucos uptake was enhanced by insulin when edema was absent (p less than 0.05), but not when edema was present (p less than 0.05). In addition, the presence of tissue edema negated insulin-mediated glycogenesis in slow oxidative and fast oxidative glycolytic muscle (p less than 0.05 compared with control) but not in fast glycolytic muscle (p less than 0.05). These data warrant caution when using a cell-free media in the perfused rat hindquarter; however, in the absence of edema, normal responses of glucose metabolism are observed.  相似文献   

19.
Dynamic light scattering measurements were performed on spectrin from human erythrocytes in 25 mM Tris buffer at pH 7.6 with 100 mM NaCl and 5 mM EDTA. Measurements were made on spectrin solutions prepared as dimers and tetramers over the temperature range from 23 to 41 degrees C, as a function of the square of the scattering vector (K2) over the range of 0.7 x 10(10) cm-2 less than or equal to K1 less than or equal to 20 x 10(10) cm-2. Analysis of the autocorrelation functions collected for these solutions revealed the presence of two predominant motional components over the entire range of K2. Plots of the diffusion coefficients (D20) of these components, with viscosity and temperature corrected to water at 20 degrees C, as a function of K2 indicated three rather distinct regions, flat regions at low and high K2 joined by a sloping intermediate region. At small K2 (less than or equal to 4 x 10(10) cm-2) the D20 values were (7.3 +/- 2.0) x 10(-8) cm2/s for the slow component and (20.3 +/- 2.0) x 10(-8) cm2/s for the fast component. At large K2 (greater than or equal to 10 x 10(10) cm-2) the values increased to (13.0 +/- 2.0) x 10(-8) cm2/s for the slow component and (39.4 +/- 2.0) x 10(-8) cm2/s for the fast component. In the intermediate K2 region, D20 is a linear function of K2 and appears as a transition between the low and high K2 regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
It was shown that the temperature sensitivity of shortening velocity of skeletal muscles is higher at temperatures below physiological (10-25 degrees C) than at temperatures closer to physiological (25-35 degrees C) and is higher in slow than fast muscles. However, because intact muscles invariably express several myosin isoforms, they are not the ideal model to compare the temperature sensitivity of slow and fast myosin isoforms. Moreover, temperature sensitivity of intact muscles and single muscle fibers cannot be unequivocally attributed to a modulation of myosin function itself, as in such specimen myosin works in the structure of the sarcomere together with other myofibrillar proteins. We have used an in vitro motility assay approach in which the impact of temperature on velocity can be studied at a molecular level, as in such assays acto-myosin interaction occurs in the absence of sarcomere structure and of the other myofibrillar proteins. Moreover, the temperature modulation of velocity could be studied in pure myosin isoforms (rat type 1, 2A, and 2B and rabbit type 1 and 2X) that could be extracted from single fibers and in a wide range of temperatures (10-35 degrees C) because isolated myosin is stable up to physiological temperature. The data show that, at the molecular level, the temperature sensitivity is higher at lower (10-25 degrees C) than at higher (25-35 degrees C) temperatures, consistent with experiments on isolated muscles. However, slow myosin isoforms did not show a higher temperature sensitivity than fast isoforms, contrary to what was observed in intact slow and fast muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号