首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium whose major catalase (KatA) is highly stable, extracellularly present, and required for full virulence as well as for peroxide resistance in planktonic and biofilm states. Here, we dismantled the function of P. aeruginosa KatA (KatA(Pa)) by comparing its properties with those of two evolutionarily related (clade 3 monofunctional) catalases from Bacillus subtilis (KatA(Bs)) and Streptomyces coelicolor (CatA(Sc)). We switched the coding region for KatA(Pa) with those for KatA(Bs) and CatA(Sc), expressed the catalases under the potential katA-regulatory elements in a P. aeruginosa PA14 katA mutant, and verified their comparable protein levels by Western blot analysis. The activities of KatA(Bs) and CatA(Sc), however, were less than 40% of the KatA(Pa) activity, suggestive of the difference in intrinsic catalatic activity or efficiency for posttranslational activity modulation in P. aeruginosa. Furthermore, KatA(Bs) and CatA(Sc) were relatively susceptible to proteinase K, whereas KatA(Pa) was highly stable upon proteinase K treatment. As well, KatA(Bs) and CatA(Sc) were undetectable in the extracellular milieu. Nevertheless, katA(Bs) and catA(Sc) fully rescued the peroxide sensitivity and osmosensitivity of the katA mutant, respectively. Both catalase genes rescued the attenuated virulence of the katA mutant in mouse acute infection and Drosophila melanogaster models. However, the peroxide susceptibility of the katA mutant in a biofilm growth state was rescued by neither katA(Bs) nor catA(Sc). Based on these results, we propose that the P. aeruginosa KatA is highly stable compared to the two major catalases from gram-positive bacteria and that its unique properties involving metastability and extracellular presence may contribute to the peroxide resistance of P. aeruginosa biofilm and presumably to chronic infections.  相似文献   

2.
3.
4.
5.
The role of the Pseudomonas aeruginosa OxyR-controlled antioxidants alkyl hydroperoxide reductase CF (AhpCF) and catalase B (KatB) was evaluated in biofilm vs. planktonic culture upon exposure to hydrogen peroxide. AhpCF was found to be critical for survival of biofilm bacteria while KatB was more important for survival of planktonic free-swimming organisms.  相似文献   

6.
Pseudomonas aeruginosa is an obligate aerobe that is virtually ubiquitous in the environment. During aerobic respiration, the metabolism of dioxygen can lead to the production of reactive oxygen intermediates, one of which includes hydrogen peroxide. To counteract the potentially toxic effects of this compound, P. aeruginosa possesses two heme-containing catalases which detoxify hydrogen peroxide. In this study, we have cloned katB, encoding one catalase gene of P. aeruginosa. The gene was cloned on a 5.4-kb EcoRI fragment and is composed of 1,539 bp, encoding 513 amino acids. The amino acid sequence of the P. aeruginosa katB was approximately 65% identical to that of a catalase from a related species, Pseudomonas syringae. The katB gene was mapped to the 71- to 75-min region of the P. aeruginosa chromosome, the identical region which harbors both sodA and sodB genes encoding both manganese and iron superoxide dismutases. When cloned into a catalase-deficient mutant of Escherichia coli (UM255), the recombinant P. aeruginosa KatB was expressed (229 U/mg) and afforded this strain resistance to hydrogen peroxide nearly equivalent to that of the wild-type E. coli strain (HB101). The KatB protein was purified to homogeneity and determined to be a tetramer of approximately 228 kDa, which was in good agreement with the predicted protein size derived from the translated katB gene. Interestingly, KatB was not produced during the normal P. aeruginosa growth cycle, and catalase activity was greater in nonmucoid than in mucoid, alginate-producing organisms. When exposed to hydrogen peroxide and, to a greater extent, paraquat, total catalase activity was elevated 7- to 16-fold, respectively. In addition, an increase in KatB activity caused a marked increase in resistance to hydrogen peroxide. KatB was localized to the cytoplasm, while KatA, the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A P. aeruginosa katB mutant demonstrated 50% greater sensitivity to hydrogen peroxide than wild-type bacteria, suggesting that KatB is essential for optimal resistance of P. aeroginosa to exogenous hydrogen peroxide.  相似文献   

7.
Consortia of catalase positive bacteria consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae, in both the planktonic form and as biofilms, disproportionate hydrogen peroxide into oxygen and water. The biofilm, however, continued to disproportionate the hydrogen peroxide in the presence of the catalase inhibitor, 3-amino-1,2,4-triazole, while the planktonic organisms did not. While the bacterial catalase-peroxidase-dismutase system was probably responsible for the disproportionation of hydrogen peroxide in both cases, biofilms resisted inhibition of this enzyme system.  相似文献   

8.
9.
N-octanoyl cyclopentylamide (C8-CPA) was found to moderately inhibit quorum sensing in Pseudomonas aeruginosa PAO1. To obtain more powerful inhibitors, a series of structural analogs of C8-CPA were synthesized and examined for their ability to inhibit quorum sensing in P. aeruginosa PAO1. The lasB-lacZ and rhlA-lacZ reporter assays revealed that the chain length and the ring structure were critical for C8-CPA analogs to inhibit quorum sensing. N-decanoyl cyclopentylamide (C10-CPA) was found to be the strongest inhibitor, and its concentrations required for half-maximal inhibition for lasB-lacZ and rhlA-lacZ expression were 80 and 90 microM, respectively. C10-CPA also inhibited production of virulence factors, including elastase, pyocyanin, and rhamnolipid, and biofilm formation without affecting growth of P. aeruginosa PAO1. C10-CPA inhibited induction of both lasI-lacZ by N-(3-oxododecanoyl)-L-homoserine lactone (PAI1) and rhlA-lacZ by N-butanoyl-L-homoserine lactone (PAI2) in the lasI rhlI mutant of P. aeruginosa PAO1, indicating that C10-CPA interferes with the las and rhl quorum-sensing systems via inhibiting interaction between their response regulators (LasR and RhlR) and autoinducers.  相似文献   

10.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

11.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

12.
13.
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.  相似文献   

14.
Enterococcus faecalis exhibits high resistance to oxidative stress. Several enzymes are responsible for this trait. The role of alkyl hydroperoxide reductase (Ahp), thiol peroxidase (Tpx), and NADH peroxidase (Npr) in oxidative stress defense was recently characterized. Enterococcus faecalis, in contrast to many other streptococci, contains a catalase (KatA), but this enzyme can only be formed when the bacterium is supplied with heme. We have used this heme dependency of catalase activity and mutants deficient in KatA and Npr to investigate the role of the catalase in resistance against exogenous and endogenous hydrogen peroxide stress. The results demonstrate that in the presence of environmental heme catalase contributes to the protection against toxic effects of hydrogen peroxide.  相似文献   

15.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

16.
17.
18.
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 microM as FeCl(3)) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.  相似文献   

19.
20.
Pseudomonas aeruginosa attached to alginate gel beads in sparse, thin biofilms exhibited reduced susceptibility to monochloramine and hydrogen peroxide compared with planktonic cells of the same micro-organism. Disinfection rate coefficients for planktonic bacteria averaged 0.551 mg(-1)min(-1) for monochloramine and 3.1 x 10(-4)l mg(-1) min(-1) for hydrogen peroxide. The corresponding values for 24-h-old biofilm cells were 0.291 mg min(-1) and 9.2 x 10(-5) 1 mg(-1) min(-1) for monochloramine and hydrogen peroxide, respectively. Several pieces of evidence support the interpretation that the reduced susceptibility of biofilm was not due simply to inadequate delivery of the antimicrobial agent to the local environment of the attached cells. No correlation between biofilm susceptibility and biofilm initial areal cell density was observed. Rapid delivery of hydrogen peroxide to the attachment surface, and subsequently to the interior, of the alginate gel beads was visualized by a direct experimental technique. Theoretical analysis of unsteady diffusion and diffusion reaction interactions also argued against any significant delay or barrier to antimicrobial or oxygen delivery. It was hypothesized that new genes are expressed when bacteria attach to a surface and begin to form a biofilm and that some of the resulting gene products reduce the susceptibility of the cell to antimicrobial agents including oxidative biocides such as monochloramine and hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号