首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe two highly polymorphic microsatellite AC repeat sequences, VK23AC and VK14AC, which are closely linked to the fragile X at Xq27.3. Both VK23AC (DXS297) and VK14AC (DXS292) are proximal to the fragile site. Two-point linkage analysis in 31 fragile X families gave (a) a recombination frequency of 1% (range 0.00%-4%) with a maximum lod score of 32.04 for DXS297 and (b) a recombination frequency of 7% (range of 3%-15%) with a maximum lod score of 12.87 for DXS292. Both of these polymorphisms are applicable to diagnosis by linkage in families with fragile X syndrome. A multipoint linkage map of genetic markers at Xq27.3 was constructed from genotyping these polymorphisms in the CEPH pedigrees. The DXS292 marker is in the DXS98-DXS297 interval and in 3 cM proximal to DXS297.  相似文献   

2.
We have used recombinant clones derived from microdissection of the fragile X region to characterize breakpoints around the fragile site at Xq27.3. So far, no microdissection markers derived from Xq28 material have been found, thus allowing a rapid screening for clones surrounding the fragile site by their presence in a somatic cell hybrid containing Xq27.2-Xqter. A total of 43 new DNA markers from Xq27 have been sublocalized within this chromosome band. Of these new DNA markers, 5 lie in an interval defined as containing the fragile X region. The saturation of Xq27 with DNA markers by microdissection demonstrates the power of this technique and provides the resources for generating a complete physical map of the region.  相似文献   

3.
Microdissection of the fragile X region.   总被引:5,自引:2,他引:5       下载免费PDF全文
We have microdissected and cloned the region around the fragile site at Xq27.3 on the human X chromosome. All of the clones tested map to the Xq27-Xq28 region, and detailed mapping on a panel of somatic cell hybrids indicates that the microdissected library contains sequences derived from both sides of the fragile X mutation. Some of these clones give signals in rodent DNA. This library demonstrates the power of microdissection for the identification of potential coding sequences near a disease locus and provides a promising resource for the identification of the fragile X mutation.  相似文献   

4.
5.
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.  相似文献   

6.
We are pursuing a positional cloning strategy to isolate the fertility restoration gene Rfk1 from radish. Random polymorphic DNA-sequence-tagged site (RAPD-STS) markers tightly linked to the gene in radish were isolated, and a RAPD map surrounding the Rfk1 locus was constructed. We surveyed 948 F2 plants with adjacent RAPD-STS markers to isolate recombinants for bulk segregant analysis. This analysis was effective in isolating tightly linked amplification fragment length polymorphism (AFLP) markers surrounding the gene of interest. Ten tightly linked AFLP markers were obtained and used to construct a high-resolution map of the region. The closest AFLP-STS markers flanking Rfk1 were 0.1 cM and 0.2 cM away. Using the four adjacent AFLP markers, we screened lambda and cosmid libraries. The lambda and cosmid clones were aligned by examination of end sequences and restriction fragment length polymorphism (RFLP) patterns for each clone, and by hybridization to the DNA isolated from recombinants. Finally, we constructed a 198-kb contig encompassing the Rfk1 gene and comprising 20 lambda and two cosmid clones. By analysis of the breakpoints in recombinants with the rfk1/rfk1 or Rfk1/- genotype, the Rfk1 locus could be assigned to a 43-kb region comprising four lambda clones and one cosmid clone. This pinpoint localization in the radish genome has made it possible for us to identify the gene by sequence analysis and genetic transformation of cytoplasmic male-sterile Brassica napus plants.  相似文献   

7.
Physical mapping studies on the human X chromosome in the region Xq27-Xqter   总被引:23,自引:0,他引:23  
We have characterized three terminal deletions of the long arm of the X chromosome. Southern analysis using Xq27/q28 probes suggests that two of the deletions have breakpoints near the fragile site at Xq27.3. Flow karyotype analysis provides an estimate of 12 X 10(6) bp for the size of the deleted region. We have not detected the deletion breakpoints by pulsed-field gel electrophoresis (PFGE) using the closet DNA probes, proximal to the fragile site. The physical distance between the breakpoints and the probes may therefore be several hundred kilobases. The use of the deletion patients has allowed a preliminary physical map of Xq27/28 to be constructed. Our data suggest that the closest probes to the fragile site on the proximal side are 4D-8 (DXS98), cX55.7 (DXS105), and cX33.2 (DXS152). PFGE studies provide evidence for the physical linkage of 4D-8, cX55.7, and cX33.2. We have also found evidence for the physical linkage of F8C, G6PD, and 767 (DXS115), distal to the fragile site.  相似文献   

8.
We report a new polymorphic DNA marker (pJH89, DXS539) proximal to the fragile-X site. The pJH89 probe identifies a TaqI and a NcoI restriction fragment length polymorphism (combined heterozygosity of 42%) and is linked to the fragile-X locus with a maximal LOD score of 12 at 4 cM. Multipoint linkage analysis and physical mapping studies indicate that the pJH89 probe is located within the interval defined by the markers DXS369 and DXS548.  相似文献   

9.
A method is described for the isolation of chromosome region specific cosmids. The 5q35 region of the long arm of human chromosome 5 was microdissected, digested with MboI, ligated to oligonucleotide adaptors, amplified by the polymerase chain reaction and cloned into a plasmid vector. Inserts which did not contain highly repetitive sequences were used to screen a chromosome 5 cosmid library by direct hybridization. There were 33 positive cosmid clones identified with 4 microclones. Individual cosmid clones were biotinylated and used as probes for fluorescence in situ hybridization to metaphase chromosomes. Of the 33 cosmids that were mapped, 29 localized to q35 and 4 to q34, demonstrating the specificity of the microdissection library and the cosmids.  相似文献   

10.
Molecular cloning and analysis of the fragile X region in man.   总被引:5,自引:3,他引:5       下载免费PDF全文
The fragile X syndrome (FraX), the most common inherited form of mental retardation, has been located to Xq27.3. As a step in the molecular analysis of this mutation, we have cloned a contiguous 1.8 Mb region containing the entire fragile X region in YAC and cosmid clones. The cloned area defines a region of 50 kb containing a CpG island, found to be selectively methylated in patients expressing the fragile X phenotype. In this 50kb area we have localised the breakpoints of four somatic cell hybrids selected to break at the position of the fragile site. Fluorescence in-situ hybridisation of cosmids flanking this area shows that the breakpoints, the CpG island and the fragile site coincide.  相似文献   

11.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have developed a novel coincidence cloning strategy, termed Coincidence Painting, which enables the rapid generation of large numbers of region specific sequences. Coincidence Painting utilises Degenerate Oligonucleotide Primed PCR (DOP-PCR) amplification of flow sorted derivative translocation chromosomes. The PCR products are hybridised in situ onto specific flow sorted chromosomes for coincident sequence selection. Eluted and reamplified material is then cloned using a novel insert end revelation and ligation technique. Cloned inserts range in size from 150-1300 bps of which approximately 54% appear to be single copy sequences. The cloning method permits the excision of vector free probe for library hybridisation screening and the small insert size facilitates analysis for the generation of sequence tagged sites (STSs). We have used such clones successfully for YAC screening by PCR and for cosmid screening by filter hybridisation. This new methodology should allow the rapid saturation with probes of regions defined by specific translocation breakpoints.  相似文献   

13.
The locus DXS98, detected with the 1.5-kb anonymous probe p4D-8, was recently shown to be closely linked and proximal to the locus for the fragile X syndrome, with theta = .05 at lod = 3.406, by utilizing a limited number of meioses informative for a two-allele MspI RFLP. Because DXS98 may be the closest available marker to the fragile X locus (FRAXA), we sought to increase its utility for linkage studies by extending its PIC and confirming its localization to Xq27, proximal to FRAXA. We have isolated 15 kb of genomic DNA (lambda 4D8-3) from the DXS98 locus by using p4D-8 to screen a genomic phage library containing partial Sau3A-digested human DNA. Three additional RFLPs for the enzymes BglII and XmnI were found by using the entire lambda 4D8-3 as probe. Combined heterozygosity for the four RFLPs in 25 unrelated females was 48%, as compared with only 28% when the MspI RFLP alone was used. In situ hybridization of unique sequences from lambda 4D8-3 was performed on metaphase chromosomes of lymphocytes and lymphoblasts from patients with the fragile X syndrome. Grains on the X chromosome were significantly clustered at band Xq27. Following fragile site induction, all nine grains in the q27-28 region were proximal to the fragile site. Confirmation of the location of DXS98 proximal to FRAXA and the new RFLPs at this locus make DXS98 more useful for linkage analysis and physical mapping in the region of the fragile X mutation.  相似文献   

14.
The gene involved in juvenile retinoschisis (RS) has previously been localized, by genetic linkage analyses, to Xp22.1-p22.2, between DXS274 and DXS43/ DXS207; it is closely linked to the latter markers. From our recent data, this interval represents a genetic distance of approximately 10 cM. In the present study, we have studied 14 French families with X-linked juvenile RS by using four CA polymorphisms that are closely linked to the RS locus and that have recently been included in an Xp22.1-p22.2 high-resolution map. Complete cosegregation with the disease locus was observed for three of them, DXS207, DXS418, and DXS999, which further confirms the locus homogeneity for RS and the close linkage to this region. One recombinant was found with the most proximal marker, AFM291wf5, thereby defining this marker as the new proximal boundary of the candidate region for RS. Under the assumption that DXS207 and DXS43 constitute the distal boundary, the present study further reduces the region containing the disease gene to a interval of 3–4 cM. The results reported here should facilitate the eventual cloning of the RS gene.  相似文献   

15.
An alternative approach for the direct analysis of chromosome regions corresponding to economical traits on the basis of chromosome microdissection is described. Large fragment clones isolated with primer pairs designed from chromosome fragment-specific DNA sequences were localized by FISH to the scraped chromosome region of interest. The chromosome fragment-specific clones are a useful tool for the generation of region specific high density marker and gene maps and represent the source material for the development of a DNA contig including the economical trait.  相似文献   

16.
17.
cDNA surveying is a straightforward approach for identifying sequences in genomic clones expressed in specific tissues. It has been applied to a subchromosomal region of human chromosome 19 (19q13.2-q13.4), a region that contains several known expressed sequences including the locus for myotonic dystrophy (DM). Genomic clones were selected from this region by probing a human placental cosmid library with a chromosome 19q-specific minisatellite sequence, or human genomic clones were isolated from a cosmid library constructed from a human chromosome 19q13.2-q13.3 hamster hybrid cell line using human repetitive DNA as probe. Pooled cDNAs synthesized from RNA of specific tissues characteristically affected in DM were depleted in repetitive sequences and used as hybridization probes against gridded cosmid arrays. DNA from the cDNA-positive cosmid clones was transferred to nylon filters and reprobed with cDNAs to identify restriction fragments that were expressed in these tissues. Hybridizing restriction fragments were subcloned, sequenced, and demonstrated to be nonrepetitive. Primer pairs complementary to subcloned sequences were constructed and used for PCR amplification of cDNA synthesized from RNA of tissues affected in myotonic dystrophy. PCR products were sequenced to verify the identity of expressed genomic DNA and its corresponding cDNA.  相似文献   

18.
Summary The major concept of fragile X pathogenesis postulates that the fragile site at band Xq27.3 [fra(X)] represents the primary defect. The expression of fra(X) is predicted to be an intrinsic property of the mutated chromosome and, hence, should not be suppressed by X inactivation in females or induced by X-linked trans-acting factors. We made fibroblast clones of a fra(X)-positive female. Monoclonality was demonstrated using the DNA methylation assay at DXS255. The mutated X chromosomes and their states of genetic activity in the different clones were also defined by molecular methods. Five clones were selected to induce expression of fra(X) by 10-7 M FUdR; two carried an active mutated X chromosome, in the other three the mutated X chromosome was inactivated. Fra(X) was found expressed in both types of clones. The percentages of positive cells were as high as 7–10%, regardless of the genetic activity of the mutated X chromosomes. DNA replicating patterns, obtained by BUdR labelling, demonstrated that expression occurred only on the mutated X chromosomes previously identified by molecular methods. The concept that the fragile site represents the primary mutation is now strongly supported by experimental evidence. The expression of fra (X) in females is independent of X inactivation and other trans-acting factors.  相似文献   

19.
20.
We report the identification of a new RFLP detected by the DNA probe MN12, which is linked to both the fragile site on the X chromosome at Xq27.3 and the highly polymorphic locus detected by St14 (DXS52). In situ mapping confirms the localisation of MN12 distal to the fragile site. A detailed physical analysis of this region of the X chromosome using pulsed-field gel electrophoresis has shown that MN12, St14 and DX13 (DXS15) are physically linked within a region of 470kb. A long range restriction map around the MN12 locus reveals at least two candidate HTF islands, suggesting the existence of expressed sequences in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号