首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The β-cyanoethyl phosphosphoramidite derivatives of 6-methyl- and 6-methoxymethyl-3-(2-deoxy-β-D-ribofuranosyl)-3H-pyrrolo[2,3-d]pyrimidin-2-one have been synthesized. These monomers have been employed for oligodeoxynucleotide synthesis to evaluate their effect on duplex stability and ability to fluorometrically report on hybridization. The structurally conservative 6-methoxymethyl-substitution results in a pyrrolocytidine that is stabilizing toward hybrid formation (Δ Tm = +1.3 °C) whereas the known 6-methylpyrrolocytidine is destabilizing (Δ Tm = ?4.7 °C), in the sequence examined. The 6-methoxymethylpyrrolocytidine retains excellent mismatch discrimination and its fluorescence is selectively quenched when hybridized to a match oligodeoxynucleotide sequence. The quenching of fluorescence for an internal position is approximately three-fold, whereas a terminal position (5′-end or 3′-end) experienced approximately two-fold decrease in the fluorescence intensity.  相似文献   

2.
The nucleoside analogs 1-(2'-deoxy-beta-D-ribofuranosyl)- 3-nitropyrrole (9), 1-(2'-deoxy-beta-D-ribofuranosyl)-4-nitropyrazole (10), 1-(2'-deoxy-beta-D-ribofuranosyl)-4-nitroimidazole (11) and 1-(2'-deoxy-beta-D-ribofuranosyl)-5-nitroindole (21) were incorporated into the oligonucleotide 5'-d(CGCXAATTYGCG)-3'in the fourth position from the 5'-end. Procedures for synthesis of two of the nitroazole nucleosides, 10 and 11, were developed for this study. Each of the nitroazoles was converted into a 3'-phosphoramidite for oligonucleotide synthesis by conventional automated protocols. Four oligonucleotides were synthesized for each modified nucleoside in order to obtain duplexes in which each of the four natural bases was placed opposite (position 9) the nitroazole. In order to assess the role of the nitro group on base stacking interaction, sequences were also synthesized in which the fourth base was 1-(2'-deoxy-beta-D-ribofuranosyl)pyrazole. Corresponding sequences containing an abasic site, as well as sequences containing inosine, were synthesized for comparison. Thermal melting studies yielded T m values and thermodynamic parameters. Each nucleoside analog displayed a unique pattern of base pairing preferences. The least discriminating analog was 3-nitropyrrole, for which T m values differed by 5 degrees C and Delta G 25 degrees C ranged from -6.1 to -6.5 kcal/mol. 5-Nitroindole gave duplexes with significantly higher thermal stability, with Tm values varying from 35.0 to 46.5 degrees C and -Delta G 25 degrees C ranging from 7.7 to 8.5 kcal/mol. Deoxyinosine (22), a natural analog which has found extensive use as a universal nucleoside, is far less non-discriminating than any of the nitroazole derivatives. Tm values ranged from 35.4 degrees C when paired with G to 62.3 degrees C when paired with C. The significance of the nitro substituent was determined by comparison of the base pairing properties of a simple azole nucleoside, 1-(2'-deoxy-beta-D-ribofuranosyl)pyrazole (12). The pyrazole-containing sequences melt at 10-20 degrees C lower than the corresponding nitropyrazole-containing sequences. On average, the pyrazole-containing sequences were equivalent in stability (average Delta G = -4.8 kcal/mol) to the sequences containing an abasic site (average Delta G = -4.7 kcal/mol).  相似文献   

3.
LNA guanine and 2,6-diaminopurine (D) phosphoramidites have been synthesized as building blocks for antisense oligonucleotides (ON). The effects of incorporating LNA D into ON were investigated. As expected, LNA D containing ON showed increased affinity towards complementary DNA (Delta Tm +1.6 to +3.0 degrees C) and RNA (Delta Tm +2.6 to +4.6 degrees C) ON. To evaluate if LNA D containing ON have an enhanced mismatch sensitivity compared to their complementary LNA A containing ON thermal denaturation experiments towards singly mismatched DNA and RNA ON were undertaken. Replacing one LNA A residue with LNA D, in fully LNA modified ON, resulted in higher mismatch sensitivity towards DNA ON (Delta Delta Tm -4 to >-17 degrees C). The same trend was observed towards singly mismatched RNA ON (Delta Delta Tm D-a = -8.7 degrees C and D-g = -4.5 degrees C) however, the effect was less clearcut and LNA A showed a better mismatch sensitivity than LNA D towards cytosine (Delta Tm +5.5 degrees C).  相似文献   

4.
Lu X  Tobacman LS  Kawai M 《Biophysical journal》2006,91(11):4230-4240
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.  相似文献   

5.
Fragments comprising the 49 nucleotides from the 3'-end have been purified from 16S ribosomal RNA of wild-type Escherichia coli and from a kasugamycin-resistant mutant that specifically lacks dimethylation of two adjacent adenines near the 3'-terminus. These fragments, obtained after treatment of ribosomes in vitro with the bacteriocin cloacin DF13, were used to study the effect of the methyl groups on the temperature dependent unfolding of double-stranded regions. Both fragments contain at least 3 independent melting transitions, of which the one with the highest Tm corresponds with the unfolding of a nine-basepair long central hairpin. Dimethylation of the adenines in the loop of this hairpin lowers the melting temperature (Tm) by approximately 2 degrees C at 0.2 M NaCl and by about 5 degrees C at 0.15 M NaCl. It is suggested that m6(2)Am6(2)A is more antagonistic to loop formation that ApA and that the function of the methyl groups is to help to destabilize the 3'-terminal hairpin in 16S rRNA in order to facilitate intermolecular interactions.  相似文献   

6.
Thermal stability of myosin rod from various species   总被引:1,自引:0,他引:1  
The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.  相似文献   

7.
This paper described synthesis of 2',5'-oligoadenylate (2-5A) analogs containing the purine acyclonucleoside, 9-[(2'S,3'R)-2',3',4'-trihydroxybutyl]adenine (2). The ability of the analogs to activate recombinant human RNase L was evaluated using 5'-32P-r(C11U2C7)-3' as a substrate. The EC50 value (the concentration of the 2-5A required to cleave half of the RNA) of the parent 2-5A tetramer 13 was 1.0 nM, whereas those of the analog 14 incorporating 2 at the second position from the 5'-end and the analog 15 incorporating 2 at the third position from the 5'-end were 9.0 and 1.7 nM, respectively. The analogs 14 and 15 were only 9- and 1.7-fold less potent than the parent 2-5A 13 itself, in RNase L activation ability. Furthermore, the oligodeoxynucleotide containing 2 was more resistant to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than the unmodified oligodeoxynucleotide. Thus, incorporation of an acyclonucleoside into 2-5A may be useful for developing an antiviral agent based on the 2-5A system.  相似文献   

8.
M E Holtzer  A Holtzer 《Biopolymers》1990,30(9-10):985-993
Circular dichroism (CD) experiments in the backbone (200-240 nm) region are reported for four isolated, excised two-chain, coiled-coil segments whose chains comprise, respectively, residues 11-127, 142-281, 1-189, and 190-284 of the rabbit alpha alpha-tropomyosin (Tm) sequence. The uv and CD spectra for the noncross-linked segments are very similar to those for parent Tm. At 3 degrees C, all have a helix content of 90% or more; moreover, all thermal denaturation curves depend on concentration, as required by mass action, and are completely reversible. At comparable concentrations, solutions show values of T1/2 (the temperature at which the helix content is 50%) following the order of 11Tm127 approximately 1Tm189 greater than 142Tm281 greater than 190Tm284. The thermal unfolding data for 11Tm127, 190Tm284, and 142Tm281 fall on apparently monophasic curves (single inflection point). However, curves for 1Tm189 show a heretofore unknown low temperature transition in which the helix content drops from approximately 90% at 2 degrees C to approximately 73% at 20 degrees C, indicating that this segment has one or more weak sections totaling approximately 50 residues per chain. Since thermal denaturation curves for noncross-linked 11Tm127, 142Tm281, and Tm have no such low temperature transition, i.e., the helix content is not additive, the weak region probably comprises the bulk of the residues between 127 and 189 in 1Tm189, but is somehow stabilized in 142Tm281 and in parent Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

10.
Two highly fluorescent compounds, viz. 6-(6-isobutyrylamino-1,3-dioxo-1 H,3H-benzo[de]isoquinolin-2-yl)-hexanoic acid and 6-(6-dimethylamino-1,3-dioxo-1 H,3H-benzo[de]isoqu-inolin-2-yl)-hexanoic acid have been synthesized, characterized, and attached to 12-mer oligodeoxyribonucleotides at their 5'-end using suitable linker molecule. These labeled oligodeoxyribonucleotides have shown appreciable fluorescence even at 0.0019 microM concentrations. Thermal denaturation studies have shown comparatively higher Tm values when oligodeoxyribonucleotides are labeled. These labeled oligodeoxyribonucleotides have been purified on RP-HPLC utilizing their hydrophobicity and on polyacrylamide gel because of their easy detection due to fluorescence.  相似文献   

11.
The nuclear matrix is a thermolabile cellular structure   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat shock sensitizes cells to ionizing radiation, cells heated in S phase have increased chromosomal aberrations, and both Hsp27 and Hsp70 translocate to the nucleus following heat shock, suggesting that the nucleus is a site of thermal damage. We show that the nuclear matrix is the most thermolabile nuclear component. The thermal denaturation profile of the nuclear matrix of Chinese hamster lung V79 cells, determined by differential scanning calorimetry (DSC), has at least 2 transitions at Tm = 48 degrees C and 55 degrees C with an onset temperature of approximately 40 degrees C. The heat absorbed during these transitions is 1.5 cal/g protein, which is in the range of enthalpies for protein denaturation. There is a sharp increase in 1-anilinonapthalene-8-sulfonic acid (ANS) fluorescence with Tm = 48 degrees C, indicating increased exposure of hydrophobic residues at this transition. The Tm = 48 degrees C transition has a similar Tm to those predicted for the critical targets for heat-induced clonogenic killing (Tm = 46 degrees C) and thermal radiosensitization (Tm = 47 degrees C), suggesting that denaturation of nuclear matrix proteins with Tm = 48 degrees C contribute to these forms of nuclear damage. Following heating at 43 degrees C for 2 hours, Hsc70 binds to isolated nuclear matrices and isolated nuclei, probably because of the increased exposure of hydrophobic domains. In addition, approximately 25% of exogenous citrate synthase also binds, indicating a general increase in aggregation of proteins onto the nuclear matrix. We propose that this is the mechanism for increased association of nuclear proteins with the nuclear matrix observed in nuclei Isolated from heat-shocked cells and is a form of indirect thermal damage.  相似文献   

12.
The interactions of oligonucleotide analogs, 12-mers, which contain deoxyribo- or 2'-O-methylribose sugars and methylphosphonate internucleotide linkages with complementary 12-mer DNA and RNA targets and the effect of chirality of the methylphosphonate linkage on oligomer-target interactions was studied. Oligomers containing a single Rp or Sp methylphosphonate linkage (type 1) or oligomers containing a single phosphodiester linkage at the 5'-end followed by 10 contiguous methylphosphonate linkages of random chirality (type 2) were prepared. The deoxyribo- and 2'-O-methylribo- type 1 12-mers formed stable duplexes with both the RNA and DNA as determined by UV melting experiments. The melting temperatures, Tms, of the 2'-O-methylribo-12-mer/RNA duplexes (49-53 degrees C) were higher than those of the deoxyribo-12mer/RNA duplexes (31-36 degrees C). The Tms of the duplexes formed by the Rp isomers of these oligomers were approximately 3-5 degrees C higher than those formed by the corresponding Sp isomers. The deoxyribo type 2 12-mer formed a stable duplex, Tm 34 degrees C, with the DNA target and a much less stable duplex with the RNA target, Tm < 5 degrees C. In contrast, the 2'-O-methylribo type 2 12-mer formed a stable duplex with the RNA target, Tm 20 degrees C, and a duplex of lower stability with the DNA target, Tm < 5 degrees C. These results show that the previously observed greater stability of oligo-2'-O-methylribonucleotide/RNA duplexes versus oligodeoxyribonucleotide/RNA duplexes extends to oligomers containing methylphosphonate linkages and that the configuration of the methylphosphonate linkage strongly influences the stability of the duplexes.  相似文献   

13.
Ubiquinone (UQn with n = 2, 3, or 10 isoprenoid groups) was incorporated into small, sonicated vesicles made of dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylcholine (DMPC). (1) The accessibility of oxidized UQ in DPPC or DMPC vesicles to the reductant sodium borohydride (NaBH4), measured by UV spectroscopy, was UQ2 greater than UQ3 greater than UQ10 (DPPC) and UQ2 greater than UQ3 approximately UQ10 (DMPC). (2) Catalysis of the reduction of entrapped ferricyanide by exogenous NaBH4 was more effective with UQ2 than UQ10 but was slower with all quinones than reduction by added dithionite. (3) The methoxy protons of UQ2 and UQ3 in DPPC and DMPC vesicles exhibited a single NMR resonance centered at approximately 3.95 ppm, whereas the methoxy groups of UQ10 gave rise to two separate proton resonances, at 3.93 ppm and a more narrow resonance at 3.78 ppm. The UQ10 population characterized by the 3.78 ppm resonance was present at a higher concentration in DPPC than in DMPC vesicles and was relatively insensitive to reduction by NaBH4. (4) UQ10 perturbed the melting temperature (Tm) of DPPC vesicles to a smaller extent (delta Tm = -1 degrees C) than did UQ2 and UQ3 (delta Tm = -3 to -4 degrees C). The combined UV and NMR data imply the following: The UQ10 pool characterized by the 3.78 ppm peak corresponds to a more mobile UQ10 fraction that is not reduced by NaBH4 in 2-3 min and is thought to be localized close to the center of the DPPC bilayer since it has little effect on the DPPC Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Tm7sf2 gene encodes 3beta-hydroxysterol Delta(14)-reductase (C14SR, DHCR14), an endoplasmic reticulum enzyme acting on Delta(14)-unsaturated sterol intermediates during the conversion of lanosterol to cholesterol. The C-terminal domain of lamin B receptor, a protein of the inner nuclear membrane mainly involved in heterochromatin organization, also possesses sterol Delta(14)-reductase activity. The subcellular localization suggests a primary role of C14SR in cholesterol biosynthesis. To investigate the role of C14SR and lamin B receptor as 3beta-hydroxysterol Delta(14)-reductases, Tm7sf2 knockout mice were generated and their biochemical characterization was performed. No Tm7sf2 mRNA was detected in the liver of knockout mice. Neither C14SR protein nor 3beta-hydroxysterol Delta(14)-reductase activity were detectable in liver microsomes of Tm7sf2((-/-)) mice, confirming the effectiveness of gene inactivation. C14SR protein and its enzymatic activity were about half of control levels in the liver of heterozygous mice. Normal cholesterol levels in liver membranes and in plasma indicated that, despite the lack of C14SR, Tm7sf2((-/-)) mice are able to perform cholesterol biosynthesis. Lamin B receptor 3beta-hydroxysterol Delta(14)-reductase activity determined in liver nuclei showed comparable values in wild-type and knockout mice. These results suggest that lamin B receptor, although residing in nuclear membranes, may contribute to cholesterol biosynthesis in Tm7sf2((-/-)) mice. Affymetrix microarray analysis of gene expression revealed that several genes involved in cell-cycle progression are downregulated in the liver of Tm7sf2((-/-)) mice, whereas genes involved in xenobiotic metabolism are upregulated.  相似文献   

16.
Preparation of the nucleoside analogues 1 and incorporation of 1, B = T, in deoxyribooligonucleotides by the phosphoramidite method is described. A two-step deprotection procedure was developed to reduce cleavage of the modified allylic unit. The binding properties of the modified oligonucleotides towards complementary DNA and RNA has been evaluated by Tm measurements showing a deltaTm of -2 to -6.5 degrees C per modification. An oligonucleotide with two modifications at the 3'-end showed considerable resistance towards cleavage by a 3'-exonuclease. No antiviral activity against HIV-1 or HSV-1 was found for 1, B = G or T, or for any of the trihydroxy derivatives 5.  相似文献   

17.
J A Broadwater  C Achim  E Münck  B G Fox 《Biochemistry》1999,38(38):12197-12204
Stearoyl-ACP Delta(9)-desaturase (Delta 9D) is a diiron enzyme that catalyzes 18:0-ACP desaturation. Each subunit of homodimeric resting Delta 9D contains a diferric cluster, while chemical reduction by 4e(-) produces a diferrous cluster in each subunit. Reaction of 4e(-)-reduced Delta 9D with 18:0-ACP and O(2) yields a blue chromophore (lambda(max) approximately 700 nm) that exhibits a vibrational spectrum indicative of a micro-1,2-peroxo complex; this species has been designated peroxo Delta9D. In contrast to other enzymic peroxodiiron intermediates, peroxo Delta 9D is long-lived (t(1/2) approximately 30 min at 25 degrees C) and decays via an oxidase reaction without formation of either H(2)O(2) or product (18:1-ACP). In this work, optical, transient kinetic, and M?ssbauer techniques have been used to further investigate the origin and nature of this unusual peroxodiiron complex. Rapid mixing of 4e(-) Delta 9D with O(2)-equilibrated 18:0-ACP produced peroxo Delta 9D as revealed by a temperature-dependent, pseudo-first-order absorption increase at 700 nm (k = 46 s(-)(1) at 6 degrees C). The M?ssbauer spectrum of peroxo Delta 9D, accounting for 96% of the total iron, consists of two quadrupole doublets present in equal proportions: delta(1) = 0.68(1) mm/s, and Delta E(Q)(1) = 1.90(2) mm/s; delta(2) = 0.64(1) mm/s, and Delta E(Q)(2) = 1.06(2) mm/s. Decay of the 700 nm optical band (k = 0.004 min(-)(1) at 6 degrees C) correlates with the complete conversion of peroxo Delta 9D into a complex called peroxo-cycled Delta 9D, which exhibits two new doublets present in equal proportions: delta(1) = 0.57(2) mm/s, and Delta E(Q)(1) = 1. 91(3) mm/s; delta(2) = 0.52(2) mm/s, and Delta E(Q)(2) = 1.41(3) mm/s. Thus, peroxo Delta 9D contains two asymmetric diferric clusters and reacts to yield peroxo-cycled Delta 9D, also containing two asymmetric diferric clusters that most probably represent a substrate complex state. The clusters of both peroxo Delta 9D and peroxo-cycled Delta 9D have a diamagnetic ground state. Because peroxo Delta 9D and peroxo-cycled Delta 9D are observed only in the presence of 18:0-ACP, substrate binding appears to have introduced asymmetry into the Delta 9D diiron clusters. In situ photolysis of peroxo Delta 9D at 4.2 K in the M?ssbauer cryostat caused the release of O(2) and the reappearance of a diferrous Delta 9D.18:0-ACP complex with slightly changed parameters, suggesting a constrained cluster configuration was produced by the photolysis event. Annealing the photolyzed sample for 30 min at 77 K quantitatively restored the M?ssbauer spectrum of peroxo Delta 9D, showing that the released O(2) was effectively sequestered within the active site.  相似文献   

18.
Analysis of sequence microheterogeneity among zein messenger RNAs   总被引:12,自引:0,他引:12  
We have synthesized cDNA clones for maize zein proteins using mRNAs purified from developing endosperm. Analysis of these clones by in vitro translation of hybrid-selected mRNAs suggested differences in sequence homology among the mRNAs for the different molecular weight zein polypeptides. These differences were also apparent in restriction maps of clones corresponding to the Mr = 22,000, 19,000, and 15,000 zeins. Using radioactive cDNA inserts as probes, we measured the extent of sequence homology among zein clones with a sensitive dot hybridization procedure. By this analysis, it was possible to distinguish clones corresponding to the different molecular weight zeins at low (Tm - 49 degrees C) to moderate (Tm - 35 degrees C) criteria, while under more stringent conditions (Tm - 20 degrees C), distinctions could be made between zein sequences within a molecular weight group. This analysis distinguish three different mRNAs for each of the Mr = 22,000 and Mr = 19,000 zeins, but only one was detected for the Mr = 15,000 zein. Comparison of the nucleotide sequences of clones for the Mr = 22,000 and Mr = 19,000 zeins showed about 60% homology throughout the coding regions. This analysis also revealed the presence of short repetitive nucleotide sequences corresponding to tandem repeats of approximately 20 amino acids in both groups of proteins.  相似文献   

19.
A Lange  D Marsh  K H Wassmer  P Meier  G Kothe 《Biochemistry》1985,24(16):4383-4392
The electron spin resonance spectra of the 1-myristoyl-2-[6-(4,4-dimethyloxazolidine-N-oxyl)myristoyl]-sn-glycero- 3-phosphocholine spin-label in highly oriented, fully hydrated bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine have been studied as a function of temperature and magnetic field orientation. The oriented spectra show clear indications of slow motional components (rotational correlation times greater than 3 ns) even in the fluid phase (T greater than 23 degrees C), indicating that motional narrowing theory is not applicable to the spectral analysis. The spectra have been simulated by a comprehensive line-shape model that incorporates trans-gauche isomerization in addition to restricted anisotropic motion of the lipid long molecular axis and that is valid in all motional regimes. In the gel (L beta') phase the spin-label chains are found to be tilted at 28 degrees with respect to the normal of the orienting plane. In the intermediate (P beta') phase there is a continuous distribution of tilt angles between 0 degrees and 25 degrees. In fluid (L alpha) phase there is no net tilt of the lipid chains. The chains rotate at an intermediate rate about their long axis in the fluid phase (tau R,parallel = 1.4-6.6 ns for T = 50-25 degrees C), but the reorientation of the chain axis is much slower (tau R, perpendicular= 13-61 ns for T = 50-25 degrees C), whereas trans-gauche isomerization (at the C-6 position) is rapid (tau J less than or equal to 0.2 ns). Below the chain melting transition both chain reorientation and chain rotation are at the ESR rigid limit (tau R greater than or equal to 100 ns), and trans-gauche isomerization is in the slow-motion regime (tau J = 3.7-9.5 ns for T = 22-2 degrees C). The chain order parameter increases continuously with decreasing temperature in the fluid phase (SZZ = 0.47-0.61 for T = 50-25 degrees C), increases abruptly on going below the chain melting transition, and then increases continuously in the intermediate phase (SZZ = 0.79-0.85 for T = 22-14 degrees C) to an approximately constant value in the gel phase (SZZ congruent to 0.86 for T = 10-2 degrees C).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We have determined the thermodynamic stability and peptide binding affinity of the carboxy-terminal Src homology 3 (SH3) domain from the Caenorhabditis elegans signal-transduction protein Sem-5. Despite its small size (62 residues) and lack of disulfide bonds, this domain is highly stable to thermal denaturation--at pH 7.3, the protein has a Tm of 73.1 degrees C. Interestingly, the protein is not maximally stable at neutral pH, but reaches a maximum at around pH 4.7 (Tm approximately equal to 80 degrees C). Increasing ionic strength also stabilizes the protein, suggesting that 1 or more carboxylate ions are involved in a destabilizing electrostatic interaction. By guanidine hydrochloride denaturation, the protein is calculated to have a free energy of unfolding of 4.1 kcal/mol at 25 degrees C. We have also characterized binding of the domain to 2 different length proline-rich peptides from the guanine nucleotide exchange factor, Sos, one of Sem-5's likely physiological ligands in cytoplasmic signal transduction. Upon binding, these peptides cause about a 2-fold increase in fluorescence intensity. Both bind with only modest affinities (Kd approximately equal to 30 microM), lower than some previous estimates for SH3 domains. By fluorescence, the domain also appears to associate with the homopolymer poly-L-proline in a similar fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号