首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.  相似文献   

2.
Refolding of the heavy chain of the Class I HLA molecule, HLA-B27, in the absence of beta(2)m, yields soluble high molecular weight (HMW) oligomers reminiscent of the oligomeric forms of beta(2)m-free heavy chains (FHCs) of class I HLA antigens observed on cell surfaces. Here we examine the structural characteristics of HMW B27 in respect of features potentially relevant to autoimmunity, such as: (a) retention of native-like structure, since this could facilitate non-canonical interactions with T-cell receptors even in the absence of bound beta(2)m and peptide, or (b) presence of non-native structure, since this could yield novel (non-self) antigenic conformational epitopes that could elicit immune attack. We report that HMW B27 is characterized by high secondary structural content, structural stability, stability to proteolysis by trypsin, and structural features that are both partly native-like, and partly non-native-like, as assessed through the binding of conformationally-distinguishing and cross-reacting scFv antibodies specifically selected against HMW B27. We also present cell ELISA data with conformation-specific scFv antibodies that distinguish between lymphocytes from individuals who are healthy and B27 positive, and those who are B27 positive but suffering from ankylosing spondylitis.  相似文献   

3.
The innate immune system is the first line of defense against invading pathogens. The retinoic acid‐inducible gene I (RIG‐I) like receptors (RLRs), RIG‐I and melanoma differentiation‐associated protein 5 (MDA5), are critical for host recognition of viral RNAs. These receptors contain a pair of N‐terminal tandem caspase activation and recruitment domains (2CARD), an SF2 helicase core domain, and a C‐terminal regulatory domain. Upon RLR activation, 2CARD associates with the CARD domain of MAVS, leading to the oligomerization of MAVS, downstream signaling and interferon induction. Unanchored K63‐linked polyubiquitin chains (polyUb) interacts with the 2CARD domain, and in the case of RIG‐I, induce tetramer formation. However, the nature of the MDA5 2CARD signaling complex is not known. We have used sedimentation velocity analytical ultracentrifugation to compare MDA5 2CARD and RIG‐I 2CARD binding to polyUb and to characterize the assembly of MDA5 2CARD oligomers in the absence of polyUb. Multi‐signal sedimentation velocity analysis indicates that Ub4 binds to RIG‐I 2CARD with a 3:4 stoichiometry and cooperatively induces formation of an RIG‐I 2CARD tetramer. In contrast, Ub4 and Ub7 interact with MDA5 2CARD weakly and form complexes with 1:1 and 2:1 stoichiometries but do not induce 2CARD oligomerization. In the absence of polyUb, MDA5 2CARD self‐associates to forms large oligomers in a concentration‐dependent manner. Thus, RIG‐I and MDA5 2CARD assembly processes are distinct. MDA5 2CARD concentration‐dependent self‐association, rather than polyUb binding, drives oligomerization and MDA5 2CARD forms oligomers larger than tetramer. We propose a mechanism where MDA5 2CARD oligomers, rather than a stable tetramer, function to nucleate MAVS polymerization.  相似文献   

4.
Formation of alpha-synuclein aggregates is proposed to be a crucial event in the pathogenesis of Parkinson's disease. Large soluble oligomeric species are observed as probable intermediates during fibril formation and these, or related aggregates, may constitute the toxic element that triggers neurodegeneration. Unfortunately, there is a paucity of information regarding the structure and composition of these oligomers. Here, the morphology and the conformational characteristics of the oligomers and filaments are investigated by a combined atomic force microscopy (AFM) and Raman microscopic approach on a common mica surface. AFM showed that in vitro early stage oligomers were globular with variable heights, while prolonged incubation caused the oligomers to become elongated as protofilaments. The height of the subsequently formed alpha-synuclein filaments was similar to that of the protofilaments. Analysis of the Raman amide I band profiles of the different alpha-synuclein oligomers establishes that the spheroidal oligomers contain a significant amount of alpha-helical secondary structure (47%), which decreases to about 37% in protofilaments. At the same time, when protofilaments form, beta-sheet structure increases to about 54% from the approximately 29% observed in spheroidal oligomers. Upon filament formation, the major conformation is beta-sheet (66%), confirmed by narrowing of the amide I band and the profile maximum shifting to 1667 cm(-1). The accumulation of spheroidal oligomers of increasing size but unchanged vibrational spectra during the fibrillization process suggests that a cooperative conformational change may contribute to the kinetic control of fibrillization.  相似文献   

5.
Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.  相似文献   

6.
BASP1 (also known as CAP-23 and NAP-22) is a brain abundant myristoylated protein localized at the inner surface of the presynaptic plasma membrane. Emerging evidence suggests that BASP1 is critically involved in various cellular processes, in particular, in the accumulation of phosphatidylinositol-4,5-diphosphate (PIP(2)) in lipid raft microdomains. We have recently shown that BASP1 forms heterogeneously-sized oligomers and higher aggregates with an outward similarity to oligomers and protofibrils of amyloid proteins. However, BASP1 is not known to be related to any amyloid disease. In the present study, we show that BASP1 induces single channel currents across negatively-charged planar lipid bilayers (containing phosphatidylserine or PIP(2)) bathed in 0.1-0.2 M KCl (pH 7.5). By their characteristics, BASP1 channels are similar to amyloid protein channels. BASP1 channels exhibit multiple conductance levels, in the range 10-3000 pS, with the most frequently observed conductance state of approximately 50 pS. The channels demonstrate a linear current-voltage relationship and voltage-independent kinetics of opening and closing. Their K(+) to Cl(-) permeability ratio is approximately 14, indicating that BASP1 channels are cation-selective. The ion channel activity of BASP1 is in accordance with the pore-like structure of BASP1 oligomers observed by electron microscopy on a lipid monolayer. Neuronal protein GAP-43, which is functionally related to BASP1 and also forms oligomers, elicited no ion channel currents under the conditions used in the present study. Elucidation of the physiological or pathological roles of ion channel activity of membrane-bound BASP1 oligomers will help to define the precise mechanism of amyloid protein toxicity.  相似文献   

7.
Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.  相似文献   

8.
DNA mimics containing non-nucleosidic pyrene building blocks are described. The modified oligomers form stable hybrids, although a slight reduction in hybrid stability is observed in comparison to the unmodified DNA duplex. The nature of the interaction between the pyrene residues in single and double stranded oligomers is analyzed spectroscopically. Intra- and interstrand stacking interactions of pyrenes are monitored by UV-absorbance as well as fluorescence spectroscopy. Excimer formation is observed in both single and double strands. In general, intrastrand excimers show fluorescence emission at shorter wavelengths (approx. 5-10 nm) than excimers formed by interstrand interactions. The existence of two different forms of excimers (intra- vs. interstrand) is also revealed in temperature dependent UV-absorbance spectra.  相似文献   

9.
Refolding of the heavy chain of the Class I HLA molecule, HLA-B27, in the absence of β2m, yields soluble high molecular weight (HMW) oligomers reminiscent of the oligomeric forms of β2m-free heavy chains (FHCs) of class I HLA antigens observed on cell surfaces. Here we examine the structural characteristics of HMW B27 in respect of features potentially relevant to autoimmunity, such as: (a) retention of native-like structure, since this could facilitate non-canonical interactions with T-cell receptors even in the absence of bound β2m and peptide, or (b) presence of non-native structure, since this could yield novel (non-self) antigenic conformational epitopes that could elicit immune attack. We report that HMW B27 is characterized by high secondary structural content, structural stability, stability to proteolysis by trypsin, and structural features that are both partly native-like, and partly non-native-like, as assessed through the binding of conformationally-distinguishing and cross-reacting scFv antibodies specifically selected against HMW B27. We also present cell ELISA data with conformation-specific scFv antibodies that distinguish between lymphocytes from individuals who are healthy and B27 positive, and those who are B27 positive but suffering from ankylosing spondylitis.  相似文献   

10.
Dynamin, a protein playing crucial roles in endocytosis, oligomerizes to form spirals around the necks of incipient vesicles and helps their scission from membranes. This oligomerization is known to be mediated by the GTPase effector domain (GED). Here we have characterized the structural features of recombinant GED using a variety of biophysical methods. Gel filtration and dynamic light scattering experiments indicate that in solution, the GED has an intrinsic tendency to oligomerize. It forms large soluble oligomers (molecular mass > 600 kDa). Interestingly, they exist in equilibrium with the monomer, the equilibrium being largely in favour of the oligomers. This equilibrium, observed for the first time for GED, may have regulatory implications for dynamin function. From the circular dichroism measurements the multimers are seen to have a high helical content. From multidimensional NMR analysis we have determined that about 30 residues in the monomeric units constituting the oligomers are flexible, and these include a 17 residue stretch near the N-terminal. This contains two short segments with helical propensities in an otherwise dynamic structure. Negatively charged SDS micelles cause dissociation of the oligomers into monomers, and interestingly, the helical characteristics of the oligomer are completely retained in the individual monomers. The segments along the chain that are likely to form helices have been predicted from five different algorithms, all of which identify two long stretches. Surface electrostatic potential calculation for these helices reveals that there is a distribution of neutral, positive and negative potentials, suggesting that both electrostatic and hydrophobic interactions could be playing important roles in the oligomer core formation. A single point mutation, I697A, in one of the helices inhibited oligomerization quite substantially, indicating firstly, a special role of this residue, and secondly, a decisive, though localized, contribution of hydrophobic interaction in the association process.  相似文献   

11.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

12.
DNA and RNA as new binding targets of green tea catechins   总被引:2,自引:0,他引:2  
The significance of catechins, the main constituent of green tea, is being increasingly recognized with regard to cancer prevention. Catechins have been studied for interactions with various proteins, but the mechanisms of the various catechins are not yet elucidated. Based on our previous observation that nucleic acids extracted from catechin-treated cells are colored, we studied whether catechins directly interact with nucleic acids using surface plasmon resonance assay (Biacore) and cold spray ionization-mass spectrometry. These two methods clearly showed that (-)-epigallocatechin gallate (EGCG) binds to both DNA and RNA molecules: the Biacore assay indicated that four catechins bound to DNA oligomers, and cold spray ionization-mass spectrometry analysis showed one to three EGCG molecules bound to single strand 18 mers of DNA and RNA. Moreover, one or two molecules of EGCG bound to double-stranded (AG-CT) oligomers of various nucleotide lengths. These results suggest that multiple binding sites of EGCG are present in DNA and RNA oligomers. Double-stranded DNA (dsDNA) oligomers were detected only as EGCG-bound forms at high temperature, whereas at low temperature both the free and bound forms were detected, suggesting that EGCG protects dsDNA oligomers from dsDNA melting to single-stranded DNA. Because both galloyl and catechol groups of EGCG are essential for DNA binding, both groups seem to hold strands of DNA via their branching structure. These findings reveal for the first time the link between catechins and polynucleotides and will intensify our understanding of the effects of catechins on DNA in terms of cancer prevention.  相似文献   

13.
Some properties of three interconvertible forms of rabbit muscle phosphofructokinase specifically eluted from DEAE-cellulose with 19 mM citrate in 0.1 M tris-phosphate buffer, pH 8,0 (I), with 0,3 M buffer (II) and 1.5 M NaCl (III) are compared. Forms I-III differ in specific activities, alpha-helices content and sedimentation properties. The kinetic behaviour of forms I and III in 25 mM glycylglycine-beta-glycerophosphate, pH 8.3, at inhibitory ATP concentrations is characterized by biphasic velocity versus fructose-6-phosphate concentration curves with nH = 1.0 and 2.3, but with different V and [S]0.5 for the respective forms. At pH 6.8 from I is characterized by the kinetic curves with a lag period, while form III--by that with a burst. Form I reveals negative cooperativity in initial and stationary velocities at low substrate concentrations. The stationary velocity of form III is characterized by negative cooperativity within the whole concentration range studied. At pH 7.0 both forms are inhibited by citrate according to the initial and stationary velocities; however, the Ki values are different. The complex kinetic behaviour of phosphofructokinase corresponds to its complex chromatographic and sedimentation behaviour. The multiplicity of the enzyme forms seems to be due to a complex set of its oligomers and conformers and a hysteretic type of transitions between them as well as to its phosphorylation and possible binding of ligands.  相似文献   

14.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

15.
Human cofilin possesses the tendency for self-association, as indicated by the rapid formation of dimers and oligomers when reacted with water-soluble carbodiimide, Ellman's reagent, or glutathione disulfide. Intermolecular disulfide bonds involve Cys(39) and probably Cys(147) of two adjacent cofilin units. The disulfide-linked dimers and oligomers exhibit a biological activity distinct from the monomer. While monomeric cofilin decreased viscosity and light-scattering of F-actin solutions, dimers and oligomers caused an increase in viscosity and light scattering. Electron microscopy revealed that cofilin oligomers induce the formation of highly ordered actin bundles with occasionally blunt ends similar to actin-cofilin rods observed in cells under oxidative stress. Bundling activity of the disulfide-linked oligomers could be completely reversed into severing activity by dithiothreitol. Formation of cofilin oligomers occurred also in the presence of actin at pH 8, but not at pH 6.6, and was significantly enhanced in the presence of phosphatidylinositol 4,5-bisphosphate. Our data are consistent with the idea that cofilin exists in two forms in vivo also: as monomers exhibiting the known severing activity and as oligomers exhibiting actin bundling activity. However, stabilization of cofilin oligomers in cytoplasm is probably achieved not by disulfide bonds but by a local increase in cofilin concentration and/or binding of regulatory proteins.  相似文献   

16.
D G Long  R M Weis 《Biochemistry》1992,31(41):9904-9911
We have observed that a 31-kDa cloned fragment from the Escherichia coli aspartate receptor exhibits a reversible monomer-oligomer reaction. The fragment, derived from the cytoplasmic region of the receptor (c-fragment), contains the signaling functions of the receptor. The wild-type and nine missense mutant fragments were analyzed. The latter were selected by the effect of the mutations on the signaling properties of the intact receptor, which induced either persistent smooth swimming or tumbling in bacteria [Mutoh, N., Oosawa, K., & Simon, M. I. (1986) J. Bacteriol. 167, 992-998]. In pH 7.0 buffer, the mutations caused five out of the six smooth mutant c-fragments to form oligomers, while neither the three tumble mutant nor wild-type fragments exhibited significant oligomer formation. At a lower pH (5.5), all of the fragments displayed some tendency to form oligomers. The equilibria between the monomer and the oligomers were monitored by gel permeation chromatography (GPC) which resolved two to three forms with apparent molecular weights between 110,000 and 270,000. The proportions of the different forms depended on concentration, indicating an association-dissociation reaction. Static light scattering (SLS) was used to demonstrate that the solution molecular mass of the wild-type c-fragment was 31 kDa and not 110 kDa as indicated by chromatography. One oligomer-forming c-fragment (S461L) eluted as the monomer and one other form, which was determined to be a dimer by SLS. The weight-average molecular weights, calculated from GPC data as a function of protein concentration, agreed well with the weight-average molecular weights obtained by SLS for this mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
G Hüther  H Luppa 《Histochemistry》1979,63(1):115-121
The multiple forms of acetylcholinesterase (AChE, E.C. 3.1.1.7) have been investigated with regard to their histochemical demonstrability. Their pattern is influenced by buffer treatment, fixation, and by incubation conditions causing aggregation and disaggregation as well as loss or inactivation of individual forms. The standard histochemical method for AChE preferentially demonstrates the high molecular forms. Most of the oligomer forms are washed out or inactivated. A selective demonstration of the highly aggregated forms is possible either by inhibition of the oligomers with diisopropylfluoridate (DFP) or by specifically dissolving them out. No reason could be found for the selective demonstration of the low molecular weight forms.  相似文献   

18.
《Biophysical journal》2020,118(5):1142-1151
The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied. The baboon peptide differs from human IAPP at three positions containing K1I, H18R, and A25T substitutions. The K1I substitution is a rare example of a replacement in the N-terminal region of amylin. The effect of this mutation on amyloid formation has not been studied, but it reduces the net charge, and amyloid prediction programs suggest that it should increase amyloidogenicity. The A25T replacement involves a nonconservative substitution in a region of IAPP that is believed to be important for aggregation, but the effects of this replacement have not been examined. The H18R point mutant has been previously shown to reduce aggregation in vitro. Baboon amylin forms amyloid on the same timescale as human amylin in vitro and exhibits similar toxicity toward cultured β-cells. The K1I replacement in human amylin slightly reduces toxicity, whereas the A25T substitution accelerates amyloid formation and enhances toxicity. Photochemical cross-linking reveals that the baboon amylin, like human amylin, forms low-order oligomers in the lag phase of amyloid formation. Ion-mobility mass spectrometry reveals broadly similar gas phase collisional cross sections for human and baboon amylin monomers and dimers, with some differences in the arrival time distributions. Preamyloid oligomers formed by baboon amylin, but not baboon amylin fibers, are toxic to cultured β-cells. The toxicity of baboon oligomers and lack of significantly detectable toxicity with exogenously added amyloid fibers is consistent with the hypothesis that preamyloid oligomers are the most toxic species produced during IAPP amyloid formation.  相似文献   

19.
In order to determine the sequence dependence of the conformation of deoxynucleotides, Raman spectra have been obtained for the following oligodeoxynucleotides in aqueous salt solutions and in crystals: d(CpG)(I), d(TGCGCGCA)(II), d(CACGCGTG)(III), d(CGTGCACG)(IV), d(CGCATGCG)(V), d(ACGCGCGT)(VI), d(CGCGTACGCG)(VII), d(CGCACGTGCG)(VIII) and d(CGTGCGCACG)(IX), d(GCTATAGC) (X), d(GCATATGC) (XI), d(GGTATACC) (XII) and d(GGATATCC) (XIII). The normal B type conformation is observed for all the oligomer DNA's at low salt (0.1-1.0 M NaCl) concentration in the temperature range of 0-25 degrees C. It was considered possible that all of the first nine oligomers could go into the Z form in aqueous high salt (5.0-6.0 M NaCl) solutions, and under these conditions the last four were considered candidates to go into the A form. The B-type conformation was found to exist in high salt solutions for (I), (IV), (V), (VI), (X), (XI) and (XIII); the Z or partial Z conformation appears in high salt solution for the oligomers, (II), (III), (VII), (VIII) and (IX); an A or partial A conformation appears in high salt solution for (XII). In the crystalline state, (IV), (VIII), (X), and (XI) stay in the B-form and all of the other oligomers adopt the complete Z-form except for (XII) which crystallizes in the A form. In both the crystal and in aqueous solutions, the identification of the conformation genus was made by means of Raman spectroscopy. In the crystal of (I), grown at pH7.0, guanosine is found to be in C3'-endo/syn conformation and cytidine in C2'-endo/anti, which may be taken as the ideal building block of the typical Z conformation. At pH4, (I) crystallizes in a conformation similar to the B genus. A study of the thermally induced B to Z transition has been carried out for (II) and (III). Based on the analysis of Raman spectra of the alternating pyrimidine-purine oligomers which might be expected to go into the Z form, the tendency for these oligonucleotides to adopt the Z form can be ranked as: d(CGCGCGCG) greater than (II) greater than (III) greater than (V) approximately (VI) greater than (IV) for octamers and (VII) greater than (VIII) greater than (IX) for the decamers. Similarly, those oligomers which might have a tendency to go into the A form could be ranked as (XII) greater than (XIII) approximately (X) greater than (XI). These data should provide help in formulating rules for predicting the sequence dependence of the B to A and B to Z transitions. Some possible rules are explored, but precautions should be taken.  相似文献   

20.
The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号