首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Incubation of human high density lipoprotein (HDL) particles (density = 1.063-1.21 g/ml) with catalytic amounts of Manduca sexta lipid transfer particle (LTP) resulted in alteration of the density distribution of HDL protein such that the original HDL particles were transformed into new particles with an equilibrium density = 1.05 g/ml. Concomitantly, substantial amounts of protein were recovered in the bottom fraction of the density gradient. The LTP-induced alteration in HDL protein density distribution was dependent on the LTP concentration and incubation time. Electrophoretic analysis revealed that the lower density fraction contained apolipoprotein A-II (apoA-II) as the major apoprotein component while nearly all of the apoA-I was recovered in the bottom fraction. Lipid analysis of the HDL substrate and product fractions revealed that the apoA-I-rich fraction was nearly devoid of lipid (less than 1%, w/w). The lipid originally associated with HDL was recovered in the low density, apoA-II-rich, lipoprotein fraction, and the ratios of individual lipid classes were the same as in control HDL. Electron microscopy and gel permeation chromatography experiments revealed that the LTP-induced product lipoprotein population comprised particles of larger size (19.7 +/- 1.4-nm diameter) than control HDL (10.6 +/- 1.4-nm diameter). The results suggest that facilitated net lipid transfer between HDL particles altered the distribution of lipid such that apoprotein migration occurred and donor particles disintegrated. Similar results were obtained when human HDL3 or HDL2 density subclasses were employed as substrates for LTP. The lower surface area to core volume ratio of the larger, product lipoprotein particles compared with the substrate HDL requires that there be a decrease in the total exposed lipid/water interface which requires stabilization by apolipoprotein. Selective displacement of apoA-I by apoA-II or apoC, due to their greater surface binding affinity, dictates that apoA-I is preferentially lost from the lipoprotein surface and is therefore recovered as lipid-free apoprotein. Thus, it is conceivable that the structural arrangement of HDL particle lipid and apoprotein components isolated from human plasma may not represent the most thermodynamically stable arrangement of lipid and protein.  相似文献   

3.
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules.  相似文献   

4.
A method has been described for the measurement of apoB concentration and specific activity in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) during metabolic studies. For measurement of specific activity, apoB was separated from other apolipoproteins and lipids by precipitation in, and subsequent washing with, isopropanol. For determination of apoB concentration, equal volumes of lipoprotein and isopropanol were mixed, and the protein content of the apoB precipitate was measured by the difference between total lipoprotein protein and the protein measured in the supernatant. Evidence that there was no apoB solubilization in isopropanol and that precipitated apoB was virtually free of soluble apolipoproteins was obtained by electrophoresis. Lipid contamination of the apoB precipitate was less than 1%. The methods were applicable to VLDL, intermediate density lipoprotein (IDL), and LDL from normolipemic patients with protein concentrations between 187 micrograms/ml and 1898 micrograms/ml. The data obtained using isopropanol were highly correlated with those using tetramethylurea, and recoveries of apoB were similar. Furthermore, the isopropanol method has been demonstrated to yield consistent data for apoB specific activities in a study of VLDL, IDL, and LDL metabolism.  相似文献   

5.
Monolayer techniques were used to study the interactions of various lipids (cholesterol, lysophosphatidyl choline, phosphatidal ethanolamine, phosphatidyl choline, sphingomyelin, stearic acid, and lipids extracted from plasma high density lipoproteins and very low density lipoprotein) with the lipid-free protein subunit of rat plasma high density lipoprotein and with rat plasma albumin. The proteins were injected under the lipid monolayer at fixed area, and the increase in surface pressure (decrease in surface tension) was measured as a function of time. With all lipids, both the rate and magnitude of this increase were greater with the apolipoprotein than with albumin. The degree of film penetration of pure lipid films (at an initial film pressure of 15 dynes/cm) by the two proteins followed the same order: cholesterol > phosphatidal ethanolamine > phosphatidyl choline > stearic acid > sphingomyelin > lysophosphatidyl choline. Other variables studied were protein concentration, initial film pressure, and pH. Two distinctive properties of the apolipoprotein were the penetration of lipid films at pressures above the collapse pressure of the protein, and the formation of a film even at low salt concentration. High surface activity and strong interaction of HDL-protein with lipid monolayers may be associated with the flexibility of the protein molecule due to absence of disulfide bridges. The unusual surface activity of HDL-protein may be intimately related to the mechanism of formation of the lipoprotein.  相似文献   

6.
A double antibody radioimmunoassay (RIA) for rat apolipoprotein A-I is reported. The ApoA-I isolated from delipidated HDL by gel filtration yielded a single band on polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS), and its amino acid composition resembled that reported by others. ApoA-I was iodinated by lactoperoxidase and the resulting 125I-apoA-I was purified by gel filtration. Up to 93% of 125I-apoA-I was precipitable by antibody and greater than 99% of bound 125I-apoA-I was displaced by "cold" apoA-I. Other rat lopoproteins and apolipoproteins did not react in this system. Human plasma were also not reactive, nor were dog, goat, and sheep plasmas.  相似文献   

7.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

8.
Zhang X  Chen B 《Biological chemistry》2011,392(5):423-429
It has been shown that apolipoprotein A-V (apoA-V) over-expression significantly lowers plasma triglyceride levels and decreases atherosclerotic lesion development. To assess the feasibility of recombinant high density lipoprotein (rHDL) reconstituted with apoA-V and apolipoprotein A-I (apoA-I) as a therapeutic agent for hyperlipidemic disorder and atherosclerosis, a series of rHDL were synthesized in vitro with various mass ratios of recombinant apoA-I and apoA-V. It is interesting to find that apoA-V of rHDL had no effect on lipoprotein lipase (LPL) activation in vitro and very low density lipoprotein (VLDL) clearance in HepG2 cells and in vivo. By contrast, LPL activation and VLDL clearance were inhibited by the addition of apoA-V to rHDL. Furthermore, the apoA-V of rHDL could not redistribute from rHDL to VLDL after incubation at 37°C for 30 min. These findings suggest that an increase of apoA-V in rHDL could not play a role in VLDL clearance in vitro and in vivo, which could, at least in part, attribute to the lost redistribution of apoA-V from rHDL to VLDL and LPL binding ability of apoA-V in rHDL. The therapeutic application of rHDL reconstituted with apoA-V and apoA-I might need the construction of rHDL from which apoA-V could freely redistribute to VLDL.  相似文献   

9.
Obesity, diabetes, insulin resistance, and hyperinsulinemia are frequently associated with a cluster of closely related lipid abnormalities such as low plasma levels of high density lipoprotein (HDL) and elevated levels of triglyceride, both known to increase the risk of developing atherosclerotic disease. The molecular mechanisms linking obesity, insulin resistance, and hyperinsulinemia to low HDL levels are incompletely understood. Here we demonstrate that insulin, through a Foxa2-mediated mechanism, inhibited the expression of apolipoprotein M (apoM), an important determinant of plasma pre-beta-HDL and alpha-HDL concentrations. Obese mice had decreased apoM expression and plasma pre-beta-HDL levels due to inactivation of Foxa2 in hyperinsulinemic states. Nuclear reexpression of Foxa2 with a phosphorylation-deficient mutant Foxa2T156A (Ad-T156A) activated apoM expression and increased plasma pre-beta-HDL and alpha-HDL levels. In contrast, haploinsufficient Foxa2(+/-) mice exhibited decreased hepatic apoM expression and plasma pre-beta-HDL and HDL levels. The increase in plasma HDL levels and pre-beta-HDL formation by Foxa2 was mediated exclusively by apoM, as constitutive active expression of Foxa2 in apoM(-/-) mice had no effect on plasma HDL levels. Our results identify a fundamental mechanism by which insulin regulates plasma HDL levels in physiological and insulin-resistant states and thus have important implications for novel therapeutic approaches to prevent atherosclerosis.  相似文献   

10.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

11.
Clusterin/human complement lysis inhibitor (CLI) is incorporated stoichiometrically into the soluble terminal complement complex and inhibits the cytolytic reaction of purified complement components C5b-9 in vitro. Using an anti-clusterin affinity column, we found that an additional protein component with a molecular mass of 28-kDa co-purifies with clusterin from human plasma. We show by immunoblotting and amino acid sequencing that this component is apolipoprotein A-I (apoA-I). By using physiological salt buffers containing 0.5% Triton X-100, apoA-I is completely dissociated from clusterin bound to the antibody column. Free clusterin immobilized on the antibody-Sepharose selectively retains apoA-I from total human plasma. Delipidated apoA-I and to a lesser extent ultracentrifugation-purified high density lipoproteins (HDL) adsorbed to nitrocellulose also have a binding affinity for purified clusterin devoid of apoA-I. The isolated apoA-I-clusterin complex contains approximately 22% (w/w) lipids which are composed of 54% (mole/mol) total cholesterol (molar ratio of unesterified/esterified cholesterol, 0.58), 42% phospholipids, and 4% triglycerides. In agreement with the low lipid content, apoA-I-clusterin complexes are detected only in trace amounts in HDL fractions prepared by density ultracentrifugation. In free flow isotachophoresis, the purified apoA-I-clusterin complex has the same mobility as the native clusterin complex in human plasma and is found in the slow-migrating HDL fraction of fasting plasma. Our data indicate that clusterin circulates in plasma as a HDL complex, which may serve not only as an inhibitor of the lytic terminal complement cascade, but also as a regulator of lipid transport and local lipid redistribution.  相似文献   

12.
In this study we examined the transfer of lipids between reconstituted high density lipoprotein discs (r-HDL) and human low density lipoproteins (LDL) in the presence and absence of lecithin:cholesterol acyltransferase (LCAT) or of plasma phospholipid transfer protein (PLTP). We found that spontaneous transfer of phospholipids from r-HDL to LDL occurred by an apparent first order reaction with a half-time of 5.8 to 6.9 hr depending on the phospholipid. During the time of incubation of r-HDL with LDL (from 0 to 25 hr), the phospholipid content of r-HDL decreased more than 30%, the free cholesterol content increased 2.5-fold, and low levels of cholesteryl esters appeared in r-HDL. These compositional changes gave rise to small discoidal particles with a limiting diameter of 77 A and two molecules of apoA-I per particle. When LCAT was included in the reaction mixture, the r-HDL lost even more phospholipid, lost some free cholesterol, and gained cholesteryl esters relative to the apolipoprotein content, due to the enzymatic reaction. The products of the LCAT reaction had a diameter of 93 A and three, rather than two, apoA-I molecules per particle. Inclusion of PLTP into the reaction mixture accelerated the transfer of phospholipids (half-time of 1.7 hr) and the formation of the 77 A product. In addition to these compositional and morphological changes, which may be important in the interconversions of native HDL subspecies, the prolonged incubations revealed some slow reactions, such as the esterification of LDL cholesterol by LCAT, a background formation of cholesteryl esters in r-HDL, and an apparent hydrolysis of cholesteryl esters in LDL in the presence of r-HDL.  相似文献   

13.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

14.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

15.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

16.
Apolipoprotein B, the polypeptide moiety of human serum low density lipoprotein, is subject to degradation (as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) both in the intact particle and after delipidation. Protease inhibitors, sodium azide, and nitrogen saturation did not influence the rate or degree of degradation. Lipid-free apolipoprotein B prepared by gel exclusion chromatography in sodium dodecyl sulfate bound a limited number of detergent molecules (up to 300) in monomeric sodium dodecyl sulfate solutions; circular dichroic spectra of this complex were similar to spectra of the intact lipoprotein. Near the critical micelle concentrations, a large, cooperative increase in detergent binding occurred, accompanied by circular dichroic changes indicating increased alpha helicity. By sucrose density centrifugation, lysopalmitoyl phosphatidylcholine could be substituted for the anionic detergent; about 300 mol of lysolipid were bound to the polypeptide. Replacement of detergent with guanidine hydrochloride by dialysis produced a soluble polypeptide with no ordered structure at denaturant concentrations above 7 M. At lower guanidine hydrochloride concentrations, structural elements were regained in a broad, reversible transition. It appears that apolipoprotein B is an easily degraded polypeptide with regions resembling water-soluble proteins but other regions which interact with lipid (or synthetic amphiphiles) and produce an overall insolubility in aqueous solution in the absence of amphiphilic ligands.  相似文献   

17.
The levels of plasma HDL cholesterol and apoA-I in NFkappaB p50 subunit-deficient mice were significantly higher than those in wild-type mice under regular and high fat diets, without any significant difference in the level of total cholesterol. To examine the role of NFkappaBin lipid metabolism, we studied its effect on the regulation of apoA-I secretion from human hepatoma HepG2 cells. Lipopolysaccharide-induced activation of NFkappaB reduced the expression of apoA-I mRNA and protein, whereas adenovirus-mediated expression of IkappaBalpha super-repressor ameliorated the reduction. This IkappaBalpha-induced apoA-I increase was blocked by preincubation with MK886, a selective inhibitor of peroxisome proliferator-activated receptor alpha (PPARalpha), suggesting that NFkappaB inactivation induces apoA-I through activation of PPARalpha. To further support this idea, the expression of IkappaBalpha increased apoA-I promoter activity, and this increase was blocked by preincubation with MK886. Mutations in the putative PPARalpha-binding site in the apoA-I promoter or lack of the site abrogated these changes. Taking these results together, inhibition of NFkappaB increases apoA-I and HDL cholesterol through activation of PPARalpha in vivo and in vitro. Our data suggest a new aspect of lipid metabolism and may lead to a new paradigm for prevention and treatment of atherosclerotic disease.  相似文献   

18.
Structure and function of apolipoprotein A-I and high-density lipoprotein   总被引:6,自引:0,他引:6  
Structural biology and molecular modeling have provided intriguing insights into the atomic details of the lipid-associated structure of the major protein component of HDL, apo A-I. For the first time, an atomic resolution map is available for future studies of the molecular interactions of HDL in such biological processes as ABC1-regulated HDL assembly, LCAT activation, receptor binding, reverse lipid transport and HDL heterogeneity. Within the context of this paradigm, the current review summarizes the state of HDL research.  相似文献   

19.
Hepatic apolipoprotein J is secreted as a lipoprotein.   总被引:3,自引:0,他引:3  
Apolipoprotein J (apoJ) is a unique glycoprotein thought to be involved in a variety of physiological processes, including lipid transport, regulation of complement function, sperm maturation, programmed cell death, and membrane recycling. In the plasma, apoJ is associated with apoA-I in high and very high density lipoproteins. In this report we demonstrate that HepG2 human hepatocellular carcinoma cells secrete apoJ in association with a significant amount of lipid, providing unequivocal evidence that apoJ can transport lipids. The HepG2 cell line has provided important clues about the structural organization of nascent lipoprotein particles. HepG2 cell apoJ-containing lipoproteins are dense and heterogenous in size, ranging from 100 to 910 kDa. Plasma and HepG2 cell apoJ-lipoproteins differ in size distribution. Both have alpha 2 electrophoretic mobility, although their average mobilities differ within the alpha 2 region. In contrast to plasma apoJ-HDL which contain little triglyceride and which can associate with apoA-I, HepG2 cell apoJ-lipoproteins are rich in triglyceride and lack apoA-I. By implication, nascent apoJ-lipoproteins undergo plasma remodeling that results in triglyceride depletion and apoA-I association. We propose that the metabolic consequences of this remodeling play an important role in lipid homeostasis in localized tissue environments, particularly where organs are isolated from the blood by cellular barriers such as in testis and brain. In such tissues, apoJ is expressed constitutively in high level compared to other lipid transport proteins.  相似文献   

20.
We prepared and isolated defined, reconstituted high density lipoprotein (r-HDL) particles containing apolipoprotein A-I (apoA-I), palmitoyloleoylphosphatidylcholine, and cholesterol. The initial r-HDL were prepared by the sodium cholate method, then part of the preparation was depleted of phospholipid by exposure to LDL, and the resulting, stable r-HDL species were isolated by gel filtration. The isolated r-HDL were characterized in terms of their size, alpha-helix content, and the conformation of apoA-I as reported by the fluorescence properties of the tryptophan residues. Then the relative reactivity of the r-HDL with lecithin cholesterol acyltransferase was assessed. The isolated, discoidal r-HDL contained 2 and 3 apoA-I molecules/particle, and had 77 and 109 A diameters, respectively. Their spectral properties were essentially identical and were distinct from the larger particles in the class of r-HDL with 2 apoA-I molecules/particle (particles with diameters of 86 and 96 A). In addition, the reactivity of the 77 and 109 A particles with pure lecithin cholesterol acyltransferase was similar and about 10-fold lower than for the 86 and 96 A particles. We conclude that the stable, limiting r-HDL particles in each class (77 and 109 A) can arise from the larger particles of the same class by depletion of phospholipids. These limiting particles have very similar apoA-I conformations, with decreased alpha-helix contents and compact protein regions, that are very poor in activating lecithin cholesterol acyltransferase. Based on these results, we propose a model to explain the origin of the different classes and subclasses of the discoidal r-HDL particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号