首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chlamydia trachomatis Mip-like protein is a lipoprotein.   总被引:2,自引:0,他引:2       下载免费PDF全文
The Mip-like protein of Chlamydia trachomatis is similar to the Mip protein of Legionella pneumophila and may be equally important for the initiation of intracellular infection. This article presents data which identify the chlamydial Mip-like protein as a lipoprotein. The amino acid sequence of the Mip-like protein contains a signal peptidase II recognition sequence, as is seen in procaryotic lipoproteins. Palmitic acid was incorporated into the recombinant chlamydial Mip-like protein. Globomycin, known to inhibit signal peptidase II, inhibited processing of the recombinant Mip-like protein. Labelling of chlamydial organisms with palmitic acid revealed incorporation into the native Mip-like protein.  相似文献   

2.
Macrophage infectivity potentiators (Mips) are FKBP domain-containing proteins reported as virulence factors in several human pathogens, such as members of genera Legionella, Salmonella and Chlamydia. The putative peptidylprolyl cis-trans isomerase (PPIase) encoded by XC2699 of the plant bacterial pathogen Xanthomonas campestris pv. campestris 8004 exhibits a 49% similarity at the amino-acid level to the Mip protein of Legionella pneumophila. This mip-like gene, XC2699, was overexpressed in Escherichia coli and the purified (His)6-tagged Mip-like protein encoded by XC2699 exhibited a PPIase activity specifically inhibited by FK-506. A mutation in the mip-like gene XC2699 led to significant reductions in virulence and replication capacity in the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.). Furthermore, the production of exopolysaccharide and the activity of extracellular proteases, virulence factors of X. campestris pv. campestris, were significantly decreased in the mip-like mutant. These results reveal that the mip-like gene is involved in the pathogenesis of X. campestris pv. campestris through an effect on the production of these virulence factors.  相似文献   

3.
A panel of monoclonal antibodies (MAb) was generated against Chlamydia trachomatis serovar B, an etiologic agent of blinding trachoma. The specificities of MAb were determined by dot blot assay by using viable elementary bodies of 13 C. trachomatis serovars and two C. psittaci strains. The dot blot assay was used to identify those antigens that were unique and immunoaccessible on the chlamydial surface. MAb were identified that recognized bi-specific (serovars B and Ba) or subspecies-specific (various B complex serovars) surface-exposed antigenic determinants that were either resistant or sensitive to heat denaturation (56 degrees C, 30 min). All of the MAb recognized the major outer membrane protein as determined by either immunoblotting or radioimmunoprecipitation. MAb specific for immunoaccessible major outer membrane protein epitopes protected mice from toxic death after i.v. injection of B serovar elementary bodies and neutralized the infectivity of the organism for monkey eyes. In contrast, MAb reactive against non-immunoaccessible subspecies- or species-specific major outer membrane protein epitopes or against an immunoaccessible genus-specific epitope located on chlamydial lipopolysaccharide did not protect mice from toxic death or neutralize infectivity of the parasite for monkey eyes. These data suggest that those major outer membrane protein antigenic determinants that are serovar or serogroup specific and are accessible to antibody on the chlamydial cell surface may be useful as a recombinant subunit vaccine for trachoma.  相似文献   

4.
The Mip-like protein of Chlamydia trachomatis has sequence similarity with both the Mip protein of Legionella pneumophila, a virulence factor necessary for optimal intracellular infection, and FK506-binding proteins (FKBPs) of both prokaryotic and eukaryotic origin. FKBPs contain a site for peptidyl-prolyl cis/trans isomerase activity, which is blocked upon binding of the drugs, FK506 or rapamycin. In this paper we report that the recombinant chlamydial Mip-like protein exhibits a peptidyl-prolyl cis/trans isomerase activity which is inhibited by either rapamycin or FK506. To assess the role of the Mip-like protein in chlamydial infection, rapamycin or FK506 (25μM), were used in either treatment of chlamydial organisms prior to inoculation, or were present at different intervals through the infection. Pretreatment of organisms alone reduced infectivity for McCoy cells by 30%, with inhibition rising to 80% on more prolonged exposure from 0 to 8h and 8 to 16 h post-inoculation and declining thereafter. When drug was present during the developmental cycle at intervals from 0 to 24h post-inoculation abnormal chlamydiae were induced in residual inclusions. The results suggest that inhibition of the isomerase of the Mip-like protein interferes with one or more early events in the infective process that determine productive intracellular infection.  相似文献   

5.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

6.
The genomic relatedness of 19 Chlamydia pneumoniae isolates (17 from respiratory origin and 2 from atherosclerotic origin), 21 Chlamydia trachomatis isolates (all serovars from the human biovar, an isolate from the mouse biovar, and a porcine isolate), 6 Chlamydia psittaci isolates (5 avian isolates and 1 feline isolate), and 1 Chlamydia pecorum isolate was studied by analyzing genomic amplified fragment length polymorphism (AFLP) fingerprints. The AFLP procedure was adapted from a previously developed method for characterization of clinical C. trachomatis isolates. The fingerprints of all C. pneumoniae isolates were nearly identical, clustering together at a Dice similarity of 92.6% (+/- 1.6% standard deviation). The fingerprints of the C. trachomatis isolates of human, mouse, and swine origin were clearly distinct from each other. The fingerprints of the isolates from the human biovar could be divided into at least 12 different types when the presence or absence of specific bands was taken into account. The C. psittaci fingerprints could be divided into a parakeet, a pigeon, and a feline type. The fingerprint of C. pecorum was clearly distinct from all others. Cluster analysis of selected isolates from all species revealed groups other than those based on sequence data from single genes (in particular, omp1 and rRNA genes) but was in agreement with available DNA-DNA hybridization data. In conclusion, cluster analysis of AFLP fingerprints of representatives of all species provided suggestions for a grouping of chlamydiae based on the analysis of the whole genome. Furthermore, genomic AFLP analysis showed that the genome of C. pneumoniae is highly conserved and that no differences exist between isolates of respiratory and atherosclerotic origins.  相似文献   

7.
The major outer membrane protein (MOMP) of Chlamydia trachomatis carries serovar-, subspecies-, species- and genus immunodomains, antibodies to which may be protective. We have compared the inferred amino acid sequences for MOMP from different serovars of C. trachomatis and from Chlamydia psittaci to identify the likely locations of these sero-taxonomic epitopes. Overlapping peptides corresponding to each of these regions were synthesized on a solid phase and probed with monoclonal antibodies (MAbs) of appropriate specificities. We describe the primary structures of the binding sites of MAb to each of these four epitopes on C. trachomatis serovar L1 MOMP.  相似文献   

8.
Mip (macrophage infectivity potentiator) and Mip-like proteins have been demonstrated to be involved in virulence of several animal pathogens, but as yet none of their native bacterial targets has been identified. Our previous work demonstrated that the Mip-like protein found in the plant pathogen Xanthomonas campestris pv. campestris (Xcc) (hereafter called Mip(Xcc)) is also involved in virulence. Inactivation of the mip(Xcc) gene leads to a significant reduction in exopolysaccharide production and extracellular protease activity via an unknown mechanism. The Xcc genome encodes six extracellular proteases, all of which are secreted via the type II secretion system. The serine protease PrtA makes the largest contribution to Xcc's total extracellular proteolytic activity. In this study, Western blotting analysis demonstrated that Mip(Xcc) was located in the periplasm. Bacterial two-hybrid and far-Western analysis indicated that Mip(Xcc) interacted with PrtA directly. Purified Mip(Xcc) was found to be able to rescue the protease activity of periplasmic proteins extracted from the mip(Xcc) mutant. These findings show that Mip(Xcc) plays a role in the maturation of PrtA, which is the novel native target for at least one Mip or Mip-like protein.  相似文献   

9.
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.  相似文献   

10.
Restriction endonuclease fragments of DNA from Neisseria gonorrhoeae and Chlamydia trachomatis (mouse pneumonitis biovar) were hybridized to probes from the N-terminal and C-terminal portions of the Escherichia coli tufA gene. In common with other Gram-negative bacteria, the genome of N. gonorrhoeae was found to contain two homologous sequences (presumptive tuf genes). The C. trachomatis genome contained a single tuf sequence.  相似文献   

11.
A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity.  相似文献   

12.
We analysed eight monoclonal antibodies (mAbs) directed against the Mip (macrophage infectivity potentiator) protein, a virulence factor of the intracellular pathogen Legionella pneumophila. Mip belongs to the FK506-binding proteins (FKBPs) and exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Five of the mAbs recognised epitopes in the C-terminal, FKBP-homologous domain of Mip, which is highly conserved among all Legionella species. Upon immunological binding to Mip, all but one of these mAbs caused inhibition of the PPIase activity in vitro. mAb binding to the N-terminal domain of Mip did not influence its enzymatic activity. All but one of the PPIase inhibiting mAbs were able to significantly inhibit the early establishment and initiation of an intracellular infection of the bacteria in Acanthamoeba castellanii, the natural host, and in the human phagocytic cell line U937. These data demonstrate for the first time that for the virulence-enhancing property of the L. pneumophila Mip protein, an intact active site of the enzyme is an essential requirement.  相似文献   

13.
A panel of monoclonal antibodies against rat brain hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) has been employed to investigate the orientation of the mitochondrially bound enzyme on the mitochondrial surface. Based on their ability to immunoprecipitate truncated forms of the protein, obtained by in vitro translation of truncated versions of the mRNA, the epitopes for seven monoclonal antibodies were mapped to regions consisting of 20-50 amino acid residues within the sequence of the N-terminal half of the enzyme. There is extensive sequence similarity between the N- and C-terminal halves of this enzyme, which is thought to have evolved by a process of gene duplication and fusion. However, these antibodies react selectively with epitopes in the N-terminal half, and thus epitopic regions for several of these antibodies could be further defined by eliminating from consideration regions showing substantial sequence similarity with the C-terminal half. The epitope for one of the monoclonal antibodies, designated 4D4, was shown to involve the extreme N-terminus of the enzyme; selective proteolytic modification of this region resulted in loss of immunoreactivity. Relative location of epitopes for three other antibodies, designated 2B, 1C5, and 4C5, within a 20-residue segment was deduced from effects of modifying sulfhydryl residues within this segment on immunoreactivity. Thus, by a combination of sequence analysis and experimental methods, the epitopes for these seven antibodies could be localized to defined regions within the overall sequence. The ability of these antibodies to prevent binding of hexokinase to mitochondria, and their ability to recognize the mitochondrially bound enzyme, provided a basis for assessing the relative proximity of the corresponding epitopes to the mitochondrial surface when the enzyme was bound. The disposition of the bound enzyme on the mitochondrial surface was deduced by relating these results to the proposed structure for brain hexokinase.  相似文献   

14.
Twenty one Chlamydia trachomatis reference strains and 40 clinical isolates belonging to the lymphogranuloma venerum (LGV) and trachoma biovars were genotyped by differential restriction mapping of the major-outer-membrane-protein gene (MOMP) obtained by the polymerase-chain reaction (PCR). AluI digestion of the PCR product distinguishes eight MOMP-genotypes corresponding to 8 serovars. Six additional enzymes (NlaIII, CfoI, EcoRI, HinfI, DdeI and FokI) further permit the discrimination of 10 MOMP-genotypes corresponding to the 10 remaining serovars of the species. AluI alone allows direct typing of 78% of the clinical isolates. AluI digestion patterns of mouse C. trachomatis biovar, a C. pneumoniae and two C. psittaci strains, studied for comparison, were clearly distinguishable from one another and from the C. trachomatis LGV and trachoma strains. These results indicate that MOMP genotyping by PCR is a valuable molecular tool for studying C. trachomatis epidemiology.  相似文献   

15.
The human pathogen Chlamydia trachomatis is an obligate intracellular bacterium, characterized by a developmental cycle that alternates between the infectious, extracellular elementary bodies and intracellular, metabolically active reticulate bodies. The cellular immune effector interferon gamma (IFN-gamma) inhibits chlamydial multiplication in human epithelial cells by induction of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase. IFN-gamma causes persistent C. trachomatis serovar A infections with atypical reticulate bodies that are unable to redifferentiate into elementary bodies and show diminished expression of important immunogens, but not of GroEL. However, the sensitivity to IFN-gamma varies among serovars of C. trachomatis. In our previous study significant IFN-gamma-specific, but tryptophan reversible, induction of proteins in C. trachomatis A and L2 with molecular masses of approximately 30 and 40 kDa was observed on 2D-gels. The 30-kDa protein from C. trachomatis L2 migrated with a significantly lower molecular weight in C. trachomatis A. In this paper we include C. trachomatis B, C and D in our investigations and identify the proteins as alpha- and beta-subunits of the chlamydial tryptophan synthase using matrix-assisted laser desorption/ionization mass spectrometry. DNA sequencing of the trpA genes from C. trachomatis A and C shows that the TrpA in these serovars is a 7.7-kDa truncated version of C. trachomatis D and L2 TrpA. The truncation probably impairs the TrpA activity, thus elucidating a possible molecular mechanism behind variations in the pathogenesis of C. trachomatis serovars.  相似文献   

16.
Six synthetic 25-mer peptides corresponding to certain presumed surface-exposed regions of gonococcal porin protein I (PI) were made from strains FA19 (PIA) and MS11 (PIB). Four peptides were immunogenic in rabbits. Affinity-purified antisera against both PIA and PIB N-terminal peptides were bactericidal for homologous gonococci and many heterologous PI serovars. However, sialylation of gonococcal lipopolysaccharide (LPS) by growth of gonococci in the presence of cytidine monophosphate-neuraminic acid (CMP-NANA) abrogated the bactericidal activity of these antisera. Binding of anti-PI monoclonal antibodies to whole gonococci was reduced two- to fourfold by sialylation of LPS, suggesting that sialylation may inhibit bactericidal activity by masking porin epitopes. However, binding of anti-PII (Opa) monoclonal antibodies was not inhibited, yet complement-mediated killing was inhibited by sialylated LPS. Binding of complement components C3 and C9 was inhibited in the presence of either anti-PI or anti-PII monoclonals when gonococci were grown in the presence of CMP-NANA. Thus sialylation inhibited both anti-PI antibody binding and complement deposition, with a resultant decrease in bactericidal activity.  相似文献   

17.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

18.
Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine module recognized by anti-epitope I antibodies, a middle four-cysteine module recognized by anti-epitopes IIb and III, and an N-terminal module recognized by anti-epitope V antibodies. Refolding assays identified that a fragment of 10 cysteines (10C), comprising the middle four-cysteine and the C-terminal six-cysteine modules, possesses superior refolding capacity. The refolded and partially purified 10C conformer elicited antibodies in mice that targeted at least two of the TB epitopes (I and III). The induced antibodies could block the fertilization of Plasmodium falciparum gametes in vivo in a concentration-dependent manner. Our results provide important insight into the structural organization of the Pfs48/45 protein and experimental support for a Pfs48/45-based subunit vaccine.  相似文献   

19.
Qi M  Lei L  Gong S  Liu Q  DeLisa MP  Zhong G 《Journal of bacteriology》2011,193(10):2498-2509
The Chlamydia-specific hypothetical protein CT795 was dominantly recognized by human antisera produced during C. trachomatis infection but not by animal antisera raised against dead chlamydia organisms. The immundominant region recognized by the human antibodies was mapped to the N-terminal fragment T22-S69. The endogenous CT795 was detected in the cytoplasm of host cells during C. trachomatis infection and was highly enriched in the host cytosolic fraction but absent in the purified chlamydia organisms, suggesting that CT795 is synthesized and secreted into host cell cytoplasm without incorporation into the organisms. All C. trachomatis serovars tested secreted CT795. A predicted signal peptide of CT795 directed the mature PhoA to cross Escherichia coli inner membranes. The secretion of CT795 in Chlamydia-infected cells was inhibited by a C(16) compound targeting signal peptidase I, but not by a C(1) compound known to block the type III secretion pathway. These results suggest that CT795, like CPAF (a Chlamydia-secreted virulence factor), is secreted into the host cell cytoplasm via a sec-dependent mechanism and not by a type III secretion pathway. The above characterizations of CT795 have provided important information for further understanding the potential roles of CT795 in C. trachomatis pathogenesis.  相似文献   

20.
A Pahl  U Keller 《Journal of bacteriology》1992,174(18):5888-5894
FK-506-binding proteins (FKBPs), which in T cells are supposed to mediate the immunosuppressive effects of the compounds FK-506 and rapamycin, have been isolated from Streptomyces chrysomallus, S. hygroscopicus subsp. ascomyceticus, and S. hygroscopicus. The latter two strains are producers of ascomycin (the ethyl analog of FK-506) and rapamycin, respectively. Like the 12-kDa FKBP in eukaryotic organisms such as humans, bovines, and Saccharomyces cerevisiae, or the FKBPs from gram-positive streptomycetes are peptidyl-prolyl-cis-trans isomerases. Inhibition studies using FK-506, rapamycin, or ascomycin, revealed inhibition of the peptidyl-prolyl cis-trans isomerase activity of the proteins at the nanomolar level, which is in the same range as with eukaryotic FKBPs. The M(r)s of the various FKBPs were 13,500 to 15,000, and they had the same pI of approximately 4.5. The N-terminal sequences of the three FKBPs were nearly identical in the first 20 amino acids. The amino acid sequence deduced from the gene sequence of S. chrysomallus gave a polypeptide of 124 amino acids. The homologies to FKBPs from humans, S. cerevisiae, and Neurospora crassa were 38, 39, and 50% identity in relevant positions, respectively. Significant homology of 38% was also seen with the C-terminal halves of bacterial protein surface antigens like the Mip protein of Legionella pneumophila and the 27-kDa Mip-like protein of Chlamydia trachomatis. In addition, two more open reading frames in Pseudomonas aeruginosa and Neisseria meningitidis of unknown function show regions of homology to the S. chrysomallus FKBP. In contrast to fungi, streptomycetes are resistant to macrolactones. Ascomycin-producing S. hygroscopicus subsp. ascomyceticus excretes the compound almost quantitatively into medium, which indicates that the organism has an efficient self-protection mechanism against its own secondary metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号