首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine 3'-phosphate and 2'-deoxyadenosine 3'-phosphate inhibit silkworm fat body adenylate cyclase. The inhibition has a rapid onset, and is dependent on the concentration of Mn2+ or Mg2+. The concentrations of 2'-deoxy-3'-AMP required for 50% inhibition (Ki) are 13 microM with 2 mM Mn2+ and 32 microM with 10 mM Mg2+. These Ki values are 7-30 times lower than that for 2'-deoxyadenosine. Stimulation of adenylate cyclase by NaF renders the activity more sensitive to the nucleotide inhibition, reducing the Ki value to 4 microM in the presence of Mn2+. The inhibitory activity is specific for adenine 3'-nucleotide; Ki for 2'-AMP and 5'-AMP are ten times or more higher than that for 3'-AMP, and the other 3'-nucleotides including 8-bromo-3'-AMP, 3'-IMP and 3'-GMP have little or no inhibitory activity.  相似文献   

2.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

3.
1. The adenylate cyclase in Trypanosoma brucei is located in the plasma membrane. 2. A partial kinetic analysis of the properties of the enzyme revealed a Km for ATP of 1.75 mM and a Km for Mg2+ of 4mM. 3. At low concentrations, Mg2+ activated the enzyme directly in addition to its effect of lowering the concentration of inhibitory free ATP species. 4. At high concentrations, Mg2+ inhibited the enzyme. Furthermore, the enzyme was inhibited at any Mg2+ concentration if the concentration of ATP exceeded that of Mg2+. 5. The opposing effects of Mg2+ at low and high concentrations would be consistent with more than one binding site for Mg2+ on the enzyme. 6. A study of the patterns of product inhibition revealed little or no effect of 3':5'-cyclic AMP, but a profound inhibition by pyrophosphate, which was competitive with respect to ATP (Ki 0.135 mM). This result suggests that the substrate-binding domain on T. brucei adenylate cyclase interacts mainly with the triphosphate portion of the ATP molecule. 7. The enzyme activity was unaffected by the usual mammalian enzyme effectors glucagon, adrenaline, adenosine, GTP and guanyl-5'-yl imidodiphosphate. 8. The enzyme was not activated by fluoride, instead a powerful inhibition was found. The enzyme was also inhibited by relatively high concentrations of Ca2+ (1 mM).  相似文献   

4.
The adenylate cyclase catalytic unit was partially purified from uterine smooth muscle by chromatography on columns of SM-2 Bio-Beads and Sepharose 6B. Stimulation of catalysis by forskolin was much greater in the presence of Mn2+ than in the presence of Mg2+. Neither NaF nor guanine nucleotide stimulated catalysis in the presence of Mg2+ or Mn2+. These properties indicated the catalytic unit was not sensitive to regulation by the GS regulatory protein. Guanine nucleotide inhibited catalysis, however, and was a competitive inhibitor of the ATP substrate (Ki approximately 50 microM). Since inhibition affected Km but not Vmax, the catalytic unit also seemed insensitive to regulation by the Gi regulatory protein, which does not act like a competitive inhibitor in other enzyme systems. The catalytic unit was also phospholipid sensitive. Only phosphatidic acid (Pho-A) had a direct effect on catalysis and was a potent inhibitor. Its effects were antagonized by the concomitant addition of phosphatidylcholine (Pho-C) but not by phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol. Acyl chain composition had a marked effect on Pho-C binding when this was determined by antagonism of Pho-A-dependent inhibition. These properties suggest the catalytic unit has both polar head group and acyl chain requirements for phospholipid binding.  相似文献   

5.
The effect of 5'-(p-bromomethylbenzoyl) adenosine (pBMBA) on adenylate cyclase from bovine caudate nucleus membranes was studied. Adenylyl-5'-methylenediphosphonate (but not adenosine) protected adenylate cyclase against inactivation by this compound. The degree of pBMBA-induced inhibition of adenylate cyclase increased in the presence of Mg2+. 5'-(p-fluorosulfonylbenzoyl) adenosine (pFSBA) was also a specific irreversible inhibitor of adenylate cyclase. It was demonstrated that the enzyme inactivated by pFSBA completely restored its activity under the action of dithiothreitol. The results obtained are indicative of the presence of the -SH group in the enzyme active site.  相似文献   

6.
1. ATP inhibits NAD(P)(+)-dependent malic enzyme activity by competing with the essential activators Mn2+ and Mg2+. 2. The kinetics fit an equation of co-operative kind with Ki of 26 microM and KA of 11.3 microM for ATP/Mn2+ competition; with Ki of 1.1 mM and KA of 0.96 mM for ATP/Mg2+ competition. 3. In the absence of the inhibitor, the co-operativity index increases from 1.77 to greater than 4 in the presence of ATP, in the case of ATP/Mn2+ competition, while it increases from 1.88 to greater than 9 for ATP/Mg2+ competition.  相似文献   

7.
Adenylate cyclase is the critical enzyme in the chemotactic signal relay mechanism of the slime mold amoeba, Dictyostelium discoideum. However, few studies examining the regulation of this enzyme have been performed in vitro due to the instability of enzyme activity in crude lysates. For studies presented in this communication, a membrane preparation has been isolated that exhibits a high specific activity adenylate cyclase that is stable during storage at -70 degrees C and under assay conditions at 27 degrees C. The enzyme was activated by micromolar concentrations of MnCl2. GTP and its non-hydrolyzable analog, guanosine 5'-(beta, gamma-imino)triphosphate, inhibited the enzyme non-competitively in the presence of either Mg2+ or Mn2+. However, this inhibition was more pronounced in the presence of Mn2+. Since guanylate cyclase activity in the D. discoideum membranes was less than 10% of the adenylate cyclase activity, there could not be a significant contribution by guanylate cyclase toward the production of cyclic AMP. Experiments indicate that D. discoideum adenylate cyclase was also regulated by adenosine analogs. The enzyme was inhibited by 2',5'-dideoxyadenosine and 2'-deoxyadenosine and inhibition was augmented by the presence of Mn2+. However, the inhibition was not entirely consistent with that which would be expected for the P-site of eukaryotic systems because some purine-modified adenosine analogs also inhibited the enzyme. Guanine nucleotides had no effect on the inhibition by either purine-modified or ribose-modified adenosine analogs. The binding of cyclic AMP to its receptor on the D. discoideum membranes was not affected by either MnCl2 or adenosine analogs.  相似文献   

8.
6-Cloro-9-beta-d-ribofuranosylpurine 5'-triphosphate (CIRTP) and 6-mercapto-9-beta-d-ribofuranosylpurine 5'-triphosphate (SRTP) irreversibly inhibit adenylate cyclase from rat brain. Adenosine 5'-[beta, gamma -imido] triphosphate protects the enzyme against inactivation by CIRTP and SRTP and acts as a competitive inhibitor with respect to ATP with the Ki value 2 X 10(-4) M. Study of the pH-dependence of the rate of the enzyme inactivation by CIRTP showed that pK for the group modified by this compound is equal to 7.45. Inactivation is first order with respect to the enzyme; the saturation effect is observed at the increased concentration of CIRTP. The k2 and KI values for irreversible inhibition of brain adenylate cyclase by CIRTP were 0.25 min-1 and 1.9 X 10(-4) M, respectively. Adenylate cyclase inhibition by SRTP is also time-dependent. Partial protection against the enzyme inactivation was observed. Dithiothreitol restores the activity of SRTP-inactivated adenylate cyclase. The results obtained indicate the presence of an -SH group in the purine amino group binding area of the enzyme active site.  相似文献   

9.
Calmodulin (CaM)-sensitive adenylate cyclase has recently been purified extensively from bovine brain. In this study, the sensitivity of the CaM-sensitive adenylate cyclase to adenosine and adenosine analogs was examined. The highly purified enzyme preparation retained sensitivity to inhibition by adenosine and adenosine analogs with ribose ring modifications, but not to those with purine ring modifications. Adenosine inhibition of this enzyme was not dependent on GTP and was noncompetitive with respect to ATP. Enzyme that had been dissociated from functional guanine nucleotide binding protein interactions by gel filtration in the presence of the zwitterionic detergent 3-[3-(cholamidopropyl)-dimethylammonio]-propanesulfonate and Mn2+ retained sensitivity to adenosine inhibition. The Ki for adenosine inhibition of the CaM-sensitive adenylate cyclase was approximately 2.6 X 10(-4) M. 5'-Guanylylimidodiphosphate and CaM did not affect the Ki of 3'-deoxyadenosine for the enzyme, but the presence of Ca2+ in the millimolar range raised the Ki by a factor of 5. These results show that the CaM-sensitive form of adenylate cyclase from bovine brain is subject to adenosine inhibition, and strongly suggest that this inhibition is due to interaction of ligands with a purine-specific ("P") site located on the catalytic subunit of the enzyme.  相似文献   

10.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

11.
Guanylate cyclase has been purified from extracts of Escherichia coli. After a 1000-fold purification, the enzyme contains only minor contaminants as judged by disc gel electrophoresis. The Km for GTP is approximately 7 times 10(-5) M and the optimal pH is 8.0. More activity is observed with Mn2+ than with Mg2+, and maximal activity is observed at 0.14 mM Mn2+ and 1.4 mM Mg2+. Based on its behavior on Sephadex G-100, the molecular weight of E. coli guanylate cyclase is about 30,000. Disc gel electrophoretic analysis indicates that the enzyme consists of a single polypeptide chain. Guanylate cyclase does not form 3':5'-AMP from ATP, and therefore, is distinct from adenylate cyclase.  相似文献   

12.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

13.
The role of calcium-calmodulin (Ca2+-CaM) in the modulation of beta-adrenergic adenylate cyclase activity in rat cerebral cortex has been studied. In addition, the effects of manganese (Mn2+) and forskolin on CaM-dependent enzyme activity were investigated. At 2 mM magnesium (Mg2+) low concentrations of Ca2+ stimulated the enzyme activity (Ka 0.25 +/- 0.08 microM), whereas higher Ca2+ levels (greater than 2 microM) inhibited the activity. No activating effect of Ca2+ was observed in CaM-depleted membranes, but the inhibitory effect persisted and the stimulatory action of Ca2+ could be restored by addition of exogenous CaM. The ability of Ca2+ to activate the enzyme was reduced by increasing concentrations of Mg2+. At 10 mM Mg2+ the apparent Ka of Ca2+ was 0.55 +/- 0.16 microM and half-maximal inhibition was observed at 80-120 microM Ca2+. A synergistic effect was observed between Ca2+ and isoprenaline on the adenylate cyclase activity. Calcium did not alter the apparent Ka of isoprenaline (0.9 +/- 0.27 microM) and isoprenaline did not change the apparent Ka of Ca2+. However, isoprenaline decreased the apparent Ka of CaM; 0.11 +/- 0.07 micrograms vs. 0.32 +/- 0.1 micrograms (0.5 ml assay mixture)-1, with and without isoprenaline, respectively. A synergistic effect was also observed between Ca2+ and forskolin, but no change in their apparent Ka values was found. Furthermore, Mn2+ was found to activate the enzyme through CaM. These data demonstrate that Ca2+ -CaM potentiates beta-adrenergic adenylate cyclase activity and thus is able to modulate neurotransmitter stimulation in cortex. Furthermore, both forskolin and Mn2+ affect CaM-dependent enzyme activity. Forskolin potentiates Ca2+-CaM stimulation, while Mn2+ increases the activity by activating the enzyme through CaM.  相似文献   

14.
Spinach leaf phosphoribulokinase is sensitive to modification by ATP analogs that react with lysine residues. The 2',3'-dialdehyde derivative of ATP (oATP) inactivates enzyme in a slow, time-dependent fashion. The process follows first-order kinetics (kinact = 0.07 min-1), and the concentration dependence of inactivation indicates tight inhibitor binding (Ki = 106 microM). ATP offers good protection against inactivation (Kd = 67 microM), suggesting that oATP is directed toward the catalytic site. This conclusion is supported by the fact that oATP functions as an alternate substrate (Km = 0.55 mM). Inactivation of phosphoribulokinase by [14C]oATP results in a modification stoichiometry of 0.7/site. The 14C-labeled enzyme is stable to dialysis, suggesting that the covalent adduct formed between protein and oATP is not a simple Schiff's base. Adenosine di- and triphosphopyridoxals (Ado-P2-Pl and Ado-P3-Pl, respectively) also inhibit spinach phosphoribulokinase in a time-dependent fashion. In this case, activity loss is reversible unless the inhibited species is borohydride-reduced, suggesting that Ado-P2-Pl and Ado-P3-Pl form Schiff's bases with an amino group on the enzyme. Protection is afforded by the substrate ATP, suggesting that modification is active site-directed. Prolonged incubation of enzyme with these inhibitors does not result in complete inactivation of phosphoribulokinase. Residual activity is dependent on inhibitor concentration, as would be expected if equilibrium is established between the noncovalent E.I complex and the covalent (Schiff's base) E-I species. Kinetic data analysis indicates Ki values of 175 and 11 microM for Ado-P2-Pl and Ado-P3-Pl, respectively. Thus, the ATP-binding domain can easily accommodate the pyridoxal moiety which is tethered to the polyphosphate chain. The phosphorylated ATP analogs employed in this study exhibit substantially tighter binding to phosphoribulokinase than does fluorosulfonyl-benzoyladenosine (Ki = 4.8 mM), which we have previously demonstrated to be useful in selectively modifying the ATP-binding domain (Krieger, T. J., and Miziorko, H. M. (1986) Biochemistry 25, 3496-3501; Krieger, T. J., Mende-Mueller, L. M., and Miziorko, H. M. (1987) Biochim. Biophys. Acta 915, 112-119). Although the adduct formed between oATP and enzyme was unsuitable for structural analysis, borohydride reduction of the Schiff's base formed between enzyme and Ado-P3-[3H]Pl produced a species useful for investigation by protein chemistry techniques. A radiolabeled tryptic peptide was prepared, isolated, and sequenced; the data indicate that lysine 68 is the residue modified by Ado-P3-[3H]Pl.  相似文献   

15.
2',5'-Dideoxy,3'-p-fluorosulfonylbenzoyl Adenosine (2',5'-dd3'-FSBA) was synthesized and found to be an agonist and affinity label for the "P"-site of adenylyl cyclase. This compound irreversibly inactivated both a crude detergent-dispersed adenylyl cyclase from rat brain and the partially purified enzyme from bovine brain. The irreversible inactivation by 100 to 200 microM 2',5'-dd3'-FSBA was blocked in a concentration-dependent manner by several established P-site inhibitors of adenylyl cyclase, 2',5'-dideoxyadenosine, 2'-d3'-AMP, adenosine, and 2'-deoxyadenosine, but not by inosine, N6-(phenylisopropyl)adenosine, adenine, 2'-d3':5'-cAMP, or 5'-AMP, agents known not to act at the P-site. Moreover, irreversible inactivation by 2',5'-dd3'-FSBA occurred in the presence of ATP at concentrations up to 3 mM, making it unlikely that inactivation was due to an effect on the enzyme's catalytic site. Adenylyl cyclase was also irreversibly inactivated by 5'-FSBA, although modestly (less than 20%) and apparently nonspecifically. Dithiothreitol protected the enzyme from irreversible inactivation by 2',5'-dd3'-FSBA, but reversible inhibition of the enzyme was still observed, although with reduced potency. When 2 mM dithiothreitol was added after a 30-min preincubation with 2',5'-dd3'-FSBA, the rat brain enzyme was partially (approximately 80%) reactivated. The data suggest that 2',5'-dd3'-FSBA may irreversibly inactivate adenylyl cyclase by reacting with a cysteinyl moiety in proximity to the P-site domain of the enzyme. These data together with results of studies of P-site inhibition kinetics published elsewhere (Johnson, R. A., and Shoshani, I. (1990) J. Biol. Chem. 265, 11595-11600) strongly suggest that the P-site and catalytic site are distinct domains on the enzyme. 2',5'-dd3'-FSBA, and especially its radiolabeled analog, should prove to be a useful probe for structural studies of adenylyl cyclase, particularly with regard to the P-site.  相似文献   

16.
P-site inhibitors are adenosine and adenine nucleotide analogues that inhibit adenylyl cyclase, the effector enzyme that catalyzes the synthesis of cyclic AMP from ATP. Some of these inhibitors may represent physiological regulators of adenylyl cyclase, and the most potent may ultimately serve as useful therapeutic agents. Described here are crystal structures of the catalytic core of adenylyl cyclase complexed with two such P-site inhibitors, 2'-deoxyadenosine 3'-monophosphate (2'-d-3'-AMP) and 2',5'-dideoxyadenosine 3'-triphosphate (2',5'-dd-3'-ATP). Both inhibitors bind in the active site yet exhibit non- or uncompetitive patterns of inhibition. While most P-site inhibitors require pyrophosphate (PP(i)) as a coinhibitor, 2',5'-dd-3'-ATP is a potent inhibitor by itself. The crystal structure reveals that this inhibitor exhibits two binding modes: one with the nucleoside moiety bound to the nucleoside binding pocket of the enzyme and the other with the beta and gamma phosphates bound to the pyrophosphate site of the 2'-d-3'-AMP.PP(i) complex. A single metal binding site is observed in the complex with 2'-d-3'-AMP, whereas two are observed in the complex with 2', 5'-dd-3'-ATP. Even though P-site inhibitors are typically 10 times more potent in the presence of Mn(2+), the electron density maps reveal no inherent preference of either metal site for Mn(2+) over Mg(2+). 2',5'-dd-3'-ATP binds to the catalytic core of adenylyl cyclase with a K(d) of 2.4 microM in the presence of Mg(2+) and 0.2 microM in the presence of Mn(2+). Pyrophosphate does not compete with 2',5'-dd-3'-ATP and enhances inhibition.  相似文献   

17.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

18.
Microtubule-associated adenylate cyclase   总被引:1,自引:0,他引:1  
Twice-cycled bovine brain or rat brain microtubule protein contains an adenylate cyclase activity that passes 0.2 micron filters, is activated 2-7-fold by 30 microM forskolin, shows modest stimulation by fluoride (especially in the presence of added AI3+), but is virtually insensitive to added guanine nucleotides. The activity is insensitive to various hormones or Ca2+/calmodulin. The adenylate cyclase is active with both Mg2+ and Mn2+ but activity is less in the presence of Mg2+ than with Mn2+. The cyclase is inhibited by agonists of the adenosine P site. It is proposed that the catalytic unit of adenylate cyclase and probably small quantities of the guanine nucleotide regulatory protein, Ns, are cycled along with microtubules.  相似文献   

19.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   

20.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号