首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

2.
Scarlata S 《Biochemistry》2002,41(22):7092-7099
One function of membrane domains of liquid-ordered lipids or "rafts" may be to stabilize complexes of signaling proteins, thereby playing a role in the transduction of cellular signals. Here, we have used fluorescence methods to directly test this idea by assessing the ability of phospholipase Cbeta2 (PLCbeta2) to associate with G protein subunits on model membranes in the fluid phase and on membranes that contain domains of lipids in the liquid-ordered phase (rafts). We find that the apparent dissociation constant for the equilibrium between PLCbeta2 and Galpha(q)(GTPgammaS) was identical on both types of membrane surfaces. However, the degree of association between PLCbeta2 and Gbetagamma subunits was significantly reduced on the surfaces containing rafts. Time studies indicate that this phenomenon is a dynamic process. Incorporating the lipid substrate of PLCbeta2 into membranes that forms rafts, we find that its basal activity is unaffected. However, its activation by Gbetagamma subunits is inhibited, supporting a reduced degree of interaction between these two proteins when rafts are present. Since lipid rafts affected PLCbeta2-Gbetagamma association and not PLCbeta2-Galpha(q)(GTPgammaS) association, we explored the possibility that the membrane interaction of Gbetagamma differed when rafts are present. We find that although the membrane partition coefficient of Gbetagamma is not significantly changed in the presence of rafts, proteolysis of Gbetagamma by trypsin increases and the ability of Gbetagamma Tyr/Trp fluorescence to be quenched by iodide ions decreases when rafts are present. These results suggest a model in which lipid rafts occlude the PLCbeta2 interaction site on Gbetagamma subunits by localizing these subunits at the domain interface.  相似文献   

3.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

4.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

5.
To determine the intracellular signaling mechanism of the 5-HT(2C) receptor endogenously expressed in choroid plexus epithelial cells, we implemented a strategy of targeted disruption of protein-protein interactions. This strategy entails the delivery of conjugated membrane-permeable peptides that disrupt domain interaction at specific steps in the signaling cascade. As proof of concept, two peptides targeted against receptor-G protein interaction domains were examined. Only G(q)CT, which targets the receptor-G(q) protein interacting domain, disrupted 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. G(s)CT, targeting the receptor-G(s) protein, disrupted beta2 adrenergic receptor-mediated activation of cAMP but not 5-HT(2C) receptor-mediated phosphatidylinositide hydrolysis. The peptide MPS-PLCbeta1M, mimicking the domain of phospholipase Cbeta1 (PLCbeta1) interacting with active Galpha(q), also blocked 5-HT(2C) receptor activation. In contrast, peptides PLCbeta2M and Phos that bind to and sequester free Gbetagamma subunits were ineffective at blocking 5-HT(2C) receptor-mediated phosphoinositol turnover. However, both peptides disrupted Gbetagamma-mediated alpha(2A) adrenergic receptor activation of mitogen-activated protein kinase. These results provide the first direct demonstration that active Galpha(q) subunits mediate endogenous 5-HT(2C) receptor activation of PLCbeta and that Gbetagamma subunits released from Galpha(q) heterotrimeric proteins are not involved. Comparable results were obtained with metabotropic glutamate receptor 5 expressed in astrocytes. Thus, conjugated, membrane-permeable peptides are effective tools for the dissection of intracellular signals.  相似文献   

6.
Visual transduction in the compound eye of flies is a well-established model system for the study of G protein-coupled transduction pathways. Pivotal components of this signaling pathway, including the principal light-activated Ca(2+) channel transient receptor potential, an eye-specific protein kinase C, and the norpA-encoded phospholipase Cbeta, are assembled into a supramolecular signaling complex by the modular PDZ domain protein INAD. We have used immunoprecipitation assays to study the interaction of the heterotrimeric visual G protein with this INAD signaling complex. Light-activated Galpha(q)- guanosine 5'-O-(thiotriphosphate) and AlF(4)(-)-activated Galpha(q), but not Gbetagamma, form a stable complex with the INAD signaling complex. This interaction requires the presence of norpA-encoded phospholipase Cbeta, indicating that phospholipase Cbeta is the target of activated Galpha(q). Our data establish that the INAD signaling complex is a light-activated target of the phototransduction pathway, with Galpha(q) forming a molecular on-off switch that shuttles the visual signal from activated rhodopsin to INAD-linked phospholipase Cbeta.  相似文献   

7.
Phosphatidylinositol-specific phospholipase C-betas (PLC-betas) are the only PLC isoforms that are regulated by G protein subunits. To further understand the regulation of PLC-beta(2) by G proteins and the functional roles of PLC-beta(2) structural domains, we tested whether the separately expressed amino and carboxyl halves of PLC-beta(2) could associate to form catalytically active enzymes as two polypeptides, and we explored how the complexes thus formed would be regulated by G protein betagamma subunits (Gbetagamma). We expressed cDNA constructs encoding PLC-beta(2) fragments of different lengths in COS-7 cells and demonstrated by coimmunoprecipitation that the coexpressed fragments could assemble and functionally reconstitute an active PLC-beta(2). The pleckstrin homology domain of PLC-beta(2) was required for its targeting to the membrane and for substrate hydrolysis. Reconstituted enzymes that contained the linker region that joins the two catalytic domains were as active or more active than the wild-type PLC-beta(2). When the linker region was removed, basal PLC-beta(2) enzymatic activity was increased further, suggesting that the linker region exerts an inhibitory effect on basal PLC-beta(2) activity. The reconstituted enzymes, like wild-type PLC-beta(2), were activated by Gbetagamma; when the C-terminal region was present in these constructs, they were also activated by Galpha(q). Gbetagamma and Galpha(q) activated these PLC-beta(2) constructs equally in the presence or absence of the linker region. We conclude that the linker region is an inhibitory element in PLC-beta(2) and that Gbetagamma and Galpha(q) do not stimulate PLC-beta(2) through easing the inhibition of enzymatic activity by the linker region.  相似文献   

8.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

9.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

10.
Atrial natriuretic peptide (ANP) inhibits the proliferation of many cells, in part through interfering with signal transduction enacted by G protein-coupled growth factor receptors. Signaling interactions between ANP and the G protein-coupled growth factor receptor ligand, endothelin-3 (ET-3), regulate astrocyte proliferation at a very proximal but undefined point. Here, we find that ANP inhibits the ability of ET-3 to activate Galpha(q) and Galpha(i) in these cells. ANP stimulated the translocation of endogenous regulators of G protein-signaling (RGS) proteins 3 and 4 from the cytosol to the cell membrane, and enhanced their association with Galpha(q) and Galpha(i). ANP effects were significantly blocked by HS-142-1, an inhibitor of guanylate cyclase activation, or by ET-3. KT5823, an inhibitor of cyclic GMP-dependent protein kinase (PKG) reversed the RGS translocation induced by ANP; conversely, expression of an active catalytic subunit of PKG-I, or 8-bromo-cyclic GMP stimulated RGS translocation. ANP caused the phosphorylation of both RGS proteins in a PKG-dependent fashion, and the expressed PKG (in the absence of ANP) also stimulated RGS phosphorylation. A novel cross-talk between PKG and RGS proteins is stimulated by ANP and leads to the increased translocation and association of RGS proteins with Galpha. The rapid inactivation of G proteins provides a mechanism by which ANP inhibits downstream signaling to the cell proliferation program.  相似文献   

11.
12.
Philip F  Scarlata S 《Biochemistry》2004,43(37):11691-11700
We have quantified the enhancement of membrane binding of activated and deactivated Galpha(s) and Galpha(q) subunits, Gbetagamma subunits, and phospholipase Cbeta(2) by lipid rafts and by the presence of membrane-associated protein partners. Membrane binding studies show that lipid rafts do not affect the intrinsic membrane affinity of Galpha(q)(GDP) and Galpha(s)(GDP), supporting the idea that these proteins partition evenly between the domains. Visualization of lipid rafts on monolayers by use of a probe that does not enter raft domains shows that neither activated nor deactivated Galpha(q)(GDP) subunits distribute evenly between the raft and nonraft domains, contrary to previous suggestions. Membrane binding of deactivated Galpha(q) and Galpha(s)(GDP) became weaker when Gbetagamma subunits were present, in contrast with the behavior predicted by thermodynamics. However, activated Galpha subunits and phospholipase Cbeta(2) were recruited to membrane surfaces by protein partners by predicted amounts. Our studies suggest that the anomalous behavior seen for deactivated Galpha subunits in the presence of Gbetagamma subunits may be due to conformational changes in the N-terminus and/or occlusion of a portion of its membrane interaction region by Gbetagamma. Even though membrane recruitment was clearly observed for one protein partner, the presence of a second partner of lower affinity did not further promote membrane binding. For these proteins, the formation of larger protein complexes with very high membrane affinities is unlikely.  相似文献   

13.
Characterization of the GRK2 binding site of Galphaq   总被引:1,自引:0,他引:1  
Heterotrimeric guanine nucleotide-binding proteins (G proteins) transmit signals from membrane bound G protein-coupled receptors (GPCRs) to intracellular effector proteins. The G(q) subfamily of Galpha subunits couples GPCR activation to the enzymatic activity of phospholipase C-beta (PLC-beta). Regulators of G protein signaling (RGS) proteins bind to activated Galpha subunits, including Galpha(q), and regulate Galpha signaling by acting as GTPase activating proteins (GAPs), increasing the rate of the intrinsic GTPase activity, or by acting as effector antagonists for Galpha subunits. GPCR kinases (GRKs) phosphorylate agonist-bound receptors in the first step of receptor desensitization. The amino termini of all GRKs contain an RGS homology (RH) domain, and binding of the GRK2 RH domain to Galpha(q) attenuates PLC-beta activity. The RH domain of GRK2 interacts with Galpha(q/11) through a novel Galpha binding surface termed the "C" site. Here, molecular modeling of the Galpha(q).GRK2 complex and site-directed mutagenesis of Galpha(q) were used to identify residues in Galpha(q) that interact with GRK2. The model identifies Pro(185) in Switch I of Galpha(q) as being at the crux of the interface, and mutation of this residue to lysine disrupts Galpha(q) binding to the GRK2-RH domain. Switch III also appears to play a role in GRK2 binding because the mutations Galpha(q)-V240A, Galpha(q)-D243A, both residues within Switch III, and Galpha(q)-Q152A, a residue that structurally supports Switch III, are defective in binding GRK2. Furthermore, GRK2-mediated inhibition of Galpha(q)-Q152A-R183C-stimulated inositol phosphate release is reduced in comparison to Galpha(q)-R183C. Interestingly, the model also predicts that residues in the helical domain of Galpha(q) interact with GRK2. In fact, the mutants Galpha(q)-K77A, Galpha(q)-L78D, Galpha(q)-Q81A, and Galpha(q)-R92A have reduced binding to the GRK2-RH domain. Finally, although the mutant Galpha(q)-T187K has greatly reduced binding to RGS2 and RGS4, it has little to no effect on binding to GRK2. Thus the RH domain A and C sites for Galpha(q) interaction rely on contacts with distinct regions and different Switch I residues in Galpha(q).  相似文献   

14.
The conceptual segregation of G protein-stimulated cell signaling responses into those mediated by heterotrimeric G proteins versus those promoted by small GTPases of the Ras superfamily is no longer vogue. PLC-epsilon, an isozyme of the phospholipase C (PLC) family, has been identified recently and dramatically extends our understanding of the crosstalk that occurs between heterotrimeric and small monomeric GTPases. Like the widely studied PLC-beta isozymes, PLC-epsilon is activated by Gbetagamma released upon activation of heterotrimeric G proteins. However, PLC-epsilon markedly differs from the PLC-beta isozymes in its capacity for activation by Galpha(12/13) - but not Galpha(q) -coupled receptors. PLC-epsilon contains two Ras-associating domains located near the C terminus, and H-Ras regulates PLC-epsilon as a downstream effector. Rho also activates PLC-epsilon, but in a mechanism independent of the C-terminal Ras-associating domains. Therefore, Ca(2+) mobilization and activation of protein kinase C are signaling responses associated with activation of both H-Ras and Rho. A guanine nucleotide exchange domain conserved in the N terminus of PLC-epsilon potentially confers a capacity for activators of this isozyme to cast signals into additional signaling pathways mediated by GTPases of the Ras superfamily. Thus, PLC-epsilon is a multifunctional nexus protein that senses and mediates crosstalk between heterotrimeric and small GTPase signaling pathways.  相似文献   

15.
16.
Receptors as well as some G protein subunits internalize after agonist stimulation. It is not clear whether Galpha(q) or Gbetagamma undergo such regulated translocation. Recent studies demonstrate that m3 muscarinic receptor activation in SK-N-SH neuroblastoma cells causes recruitment of tubulin to the plasma membrane. This subsequently transactivates Galpha(q) and activates phospholipase Cbeta1. Interaction of tubulin-GDP with Gbetagamma at the offset of phospholipase Cbeta1 signaling appears involved in translocation of tubulin and Gbetagamma to vesicle-like structures in the cytosol (Popova, J. S., and Rasenick, M. M. (2003) J. Biol. Chem. 278, 34299-34308). The relationship of this internalization to the clathrin-mediated endocytosis of the activated m3 muscarinic receptors or Galpha(q) involvement in this process has not been clarified. To test this, SK-N-SH cells were treated with carbachol, and localization of Galpha(q), Gbetagamma, tubulin, clathrin, and m3 receptors were analyzed by both cellular imaging and biochemical techniques. Upon agonist stimulation both tubulin and clathrin translocated to the plasma membrane and co-localized with receptors, Galpha(q) and Gbetagamma. Fifteen minutes later receptors, Gbetagamma and tubulin, but not Galpha(q), internalized with the clathrin-coated vesicles. Coimmunoprecipitation of m3 receptors with Gbetagamma, tubulin, and clathrin from the cytosol of carbachol-treated cells was readily observed. These data suggested that Gbetagamma subunits might organize the formation of a multiprotein complex linking m3 receptors to tubulin since they interacted with both proteins. Such protein assemblies might explain the dynamin-dependent but beta-arrestin-independent endocytosis of m3 muscarinic receptors since tubulin interaction with dynamin might guide or insert the complex into clathrin-coated pits. This novel mechanism of internalization might prove important for other beta-arrestin-independent endocytic pathways. It also suggests cross-regulation between G protein-mediated signaling and the dynamics of the microtubule cytoskeleton.  相似文献   

17.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Galpha subunits and how G protein selectivity is achieved by differences in RGS protein structure are largely unknown. Here we provide evidence indicating that the function of RGS2 is determined in part by differences in potency toward G(q) versus G(i) family members. RGS2 was 5-fold more potent than RGS4 as an inhibitor of G(q)-stimulated phosphoinositide hydrolysis in vivo. In contrast, RGS4 was 8-fold more potent than RGS2 as an inhibitor of G(i)-mediated signaling. RGS2 mutants were identified that display increased potency toward G(i) family members without affecting potency toward G(q). These mutations and the structure of RGS4-G(i)alpha(1) complexes suggest that RGS2-G(i)alpha interaction is unfavorable in part because of the geometry of the switch I binding pocket of RGS2 and a potential interaction between the alpha8-alpha9 loop of RGS2 and alphaA of G(i) class alpha subunits. The results suggest that the function of RGS2 relative to other RGS family members is governed in part by quantitative differences in activity toward different classes of Galpha subunits.  相似文献   

18.
Phosducin-like protein (PhLP) is a broadly expressed member of the phosducin (Pd) family of G protein betagamma subunit (Gbetagamma)-binding proteins. Though PhLP has been shown to bind Gbetagamma in vitro, little is known about its physiological function. In the present study, the effect of PhLP on angiotensin II (Ang II) signaling was measured in Chinese hamster ovary cells expressing the type 1 Ang II receptor and various amounts of PhLP. Up to 3.6-fold overexpression of PhLP had no effect on Ang II-stimulated inositol trisphosphate (IP(3)) formation, whereas further increases caused an abrupt decrease in IP(3) production with half-maximal inhibition occurring at 6-fold PhLP overexpression. This threshold level for inhibition corresponds to the cellular concentration of cytosolic chaperonin complex, a recently described binding partner that preferentially binds PhLP over Gbetagamma. Results of pertussis toxin sensitivity, GTPgammaS binding, and immunoprecipitation experiments suggest that PhLP inhibits phospholipase Cbeta activation by dual mechanisms: (i) steric blockage of Gbetagamma activation of PLCbeta and (ii) interference with Gbetagamma-dependent cycling of G(q)alpha by the receptor. These results suggest that G protein signaling may be regulated through controlling the cellular concentration of free PhLP by inducing its expression or by regulating its binding to the chaperonin.  相似文献   

19.
Alterations in cardiac G protein-mediated signaling, most prominently G(q/11) signaling, are centrally involved in hypertrophy and heart failure development. Several RGS proteins that can act as negative regulators of G protein signaling are expressed in the heart, but their functional roles are still poorly understood. RGS expression changes have been described in hypertrophic and failing hearts. In this study, we report a marked decrease in RGS2 (but not other major cardiac RGS proteins (RGS3-RGS5)) that occurs prior to hypertrophy development in different models with enhanced G(q/11) signaling (transgenic expression of activated Galpha(q)(*) and pressure overload due to aortic constriction). To assess functional consequences of selective down-regulation of endogenous RGS2, we identified targeting sequences for effective RGS2 RNA interference and used lipid-based transfection to achieve uptake of fluorescently labeled RGS2 small interfering RNA in >90% of neonatal and adult ventricular myocytes. Endogenous RGS2 expression was dose-dependently suppressed (up to 90%) with no major change in RGS3-RGS5. RGS2 knockdown increased phenylephrine- and endothelin-1-induced phospholipase Cbeta stimulation in both cell types and exacerbated the hypertrophic effect (increase in cell size and radiolabeled protein) in neonatal myocytes, with no major change in G(q/11)-mediated ERK1/2, p38, or JNK activation. Taken together, this study demonstrates that endogenous RGS2 exerts functionally important inhibitory restraint on G(q/11)-mediated phospholipase Cbeta activation and hypertrophy in ventricular myocytes. Our findings point toward a potential pathophysiological role of loss of fine tuning due to selective RGS2 down-regulation in G(q/11)-mediated remodeling. Furthermore, this study shows the feasibility of effective RNA interference in cardiomyocytes using lipid-based small interfering RNA transfection.  相似文献   

20.
Heterotrimeric G protein signaling specificity has been attributed to select combinations of Galpha, beta, and gamma subunits, their interactions with other signaling proteins, and their localization in the cell. With few exceptions, the G protein subunit combinations that exist in vivo and the significance of these specific combinations are largely unknown. We have begun to approach these problems in HeLa cells by: 1) determining the concentrations of Galpha and Gbeta subunits; 2) examining receptor-dependent activities of two effector systems (adenylyl cyclase and phospholipase Cbeta); and 3) systematically silencing each of the Galpha and Gbeta subunits by using small interfering RNA while quantifying resultant changes in effector function and the concentrations of other relevant proteins in the network. HeLa cells express equimolar amounts of total Galpha and Gbeta subunits. The most prevalent Galpha proteins were one member of each Galpha subfamily (Galpha(s), Galpha(i3), Galpha(11), and Galpha(13)). We substantially abrogated expression of most of the Galpha and Gbeta proteins expressed in these cells, singly and some in combinations. As expected, agonist-dependent activation of adenylyl cyclase or phospholipase Cbeta was specifically eliminated following the silencing of Galpha(s) or Galpha(q/11), respectively. We also confirmed that Gbeta subunits are necessary for stable accumulation of Galpha proteins in vivo. Gbeta subunits demonstrated little isoform specificity for receptor-dependent modulation of effector activity. We observed compensatory changes in G protein accumulation following silencing of individual genes, as well as an apparent reciprocal relationship between the expression of certain Galpha(q) and Galpha(i) subfamily members. These findings provide a foundation for understanding the mechanisms that regulate the adaptability and remarkable resilience of G protein signaling networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号