首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays an important role in insulin sensitivity, tissue homeostasis, and regulating cellular functions. We found high-level expression of PPARgamma in embryo mouse brain and neural stem cells (NSCs), in contrast to extremely low levels in adult mouse brain. Here, we show that PPARgamma mediates the proliferation and differentiation of murine NSCs via up-regulation of the epidermal growth factor receptor and activation of the ERK pathway. Cell growth rates of NSCs prepared from heterozygous PPARgamma-deficient mouse brains, PPARgamma-RNA-silenced NSCs, and PPARgamma dominant-negative NSCs were significantly decreased compared with those of wild-type NSCs. Physiological concentrations of PPARgamma agonists, rosiglitazone and pioglitazone, stimulated NSC growth, whereas antagonists caused cell death in a concentration-dependent manner via activation of the caspase cascade. The stimulation of cell growth by PPARgamma was associated with a rapid activation of the ERK pathway by phosphorylation and up-regulation of epidermal growth factor receptor and cyclin B protein levels. In contrast, activation of PPARgamma by agonists inhibited the differentiation of NSCs into neurons. The inhibition of differentiation was associated with an activation of STAT3. These data indicate that PPARgamma regulates the development of the central nervous system during early embryogenesis via control of NSC proliferation.  相似文献   

2.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

3.
Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators such as TNF-α and ICAM-1.  相似文献   

4.
5.
6.
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans.  相似文献   

7.
8.
The fatality rate associated with Streptococcus pneumoniae meningitis remains high despite adequate antibiotic treatment. IL-1 is an important proinflammatory cytokine, which is up-regulated in brain tissue after the induction of meningitis. To determine the role of IL-1 in pneumococcal meningitis we induced meningitis by intranasal inoculation with 8 x 10(4) CFU of S. pneumoniae and 180 U of hyaluronidase in IL-1R type I gene-deficient (IL-1R(-/-)) mice and wild-type mice. Meningitis resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the brain. The absence of an intact IL-1 signal was associated with a higher susceptibility to develop meningitis. Furthermore, the lack of IL-1 impaired bacterial clearance, as reflected by an increased number of CFU in cerebrospinal fluid of IL-1R(-/-) mice. The characteristic pleocytosis of meningitis was not significantly altered in IL-1R(-/-) mice, but meningitis was associated with lower brain levels of cytokines. The mortality was significantly higher and earlier in the course of the disease in IL-1R(-/-) mice. These results demonstrate that endogenous IL-1 is required for an adequate host defense in pneumococcal meningitis.  相似文献   

9.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.  相似文献   

10.
The nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is the central regulator of adipogenesis. Although it is the target for several drugs that function as agonist activators, a high affinity endogenous ligand for this receptor that is involved in regulating adipogenesis has yet to be identified. Here, we investigated the requirement for ligand activation of PPARgamma in fat cell differentiation, taking advantage of a natural mutant of this receptor that does not bind or become activated by any known natural or synthetic ligand. When ectopically expressed in PPARgamma-null fibroblasts, this Q286P allele was able to strongly promote morphological adipogenesis, without any significant difference compared with wild-type PPARgamma. In addition, no significant differences were found in the expression of several adipogenic genes between the wild-type and Q286P mutant alleles. To extend our studies to an in vivo setting, we performed subcutaneous injections of PPARgamma-expressing fibroblasts into nude mice. We found that both wild-type and Q286P mutant-expressing fibroblasts were able to generate fat pads in the mice. These results suggest that the binding and activation of PPARgamma by agonist ligands may not be required for adipogenesis under physiological conditions.  相似文献   

11.
Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to beexpressed in pancreatic islets as well as in insulin-producing cell lines.Ligands of PPAR have been shoWn toenhance glucose-induced insulin secretion in rat pancreatic islets.However,their effect on insulin secretionis still unclear.To understand the molecular mechanism by which PPAR7 exerts its effect on glucose-induced insulin secretion,we examined the endogenous activity of PPAR isoforms,and studied the PPARyfunction and its target gene expression in INS-1 cells.We found that:(1)endogenous PPARγ was activatedin a ligand-dependent manner in INS-1 cells;(2)overexpression of PPARy in the absence of PPARγ ligandsenhanced glucose-induced insulin secretion,which indicates that the increased glucose-induced insulin secretionis a PPARγ-mediated event;(3)the addition of both PPARγ and retinoid X receptor (RXR) ligands showed asynergistic effect on the augmentation of reporter activity,suggesting that the hetero-dimerization of PPAR7and RXR is required for the regulation of the target genes;(4)PPARs upregulated both the glucose transporter2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells.Our findings suggest an importantmechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expressionof GLUT2 and CAP genes in a ligand-dependent manner.  相似文献   

12.
13.
14.
15.
Delta6 desaturase (D6D), the rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis, is induced by essential fatty acid-deficient diets. Sterol regulatory element-binding protein-1c (SREBP-1c) in part mediates this induction. Paradoxically, D6D is also induced by ligands of peroxisome proliferator-activated receptor alpha (PPARalpha). Here, we report a novel physiological role of PPARalpha in the induction of genes specific for HUFA synthesis by essential fatty acid-deficient diets. D6D mRNA induction by essential fatty acid-deficient diets in wild-type mice was diminished in PPARalpha-null mice. This impaired D6D induction in PPARalpha-null mice was not attributable to feedback suppression by tissue HUFAs because PPARalpha-null mice had lower HUFAs in liver phospholipids than did wild-type mice. Furthermore, PPARalpha-responsive genes were induced in wild-type mice under essential fatty acid deficiency, suggesting the generation of endogenous PPARalpha ligand(s). Contrary to genes for HUFA synthesis, the induction of other lipogenic genes under essential fatty acid deficiency was higher in PPARalpha-null mice than in wild-type mice even though mature SREBP-1c protein did not differ between the genotypes. The expression of PPARgamma was markedly increased in PPARalpha-null mice and might have contributed to the induction of genes for de novo lipogenesis. Our study suggests that PPARalpha, together with SREBP-1c, senses HUFA status and confers pathway-specific induction of HUFA synthesis by essential fatty acid-deficient diets.  相似文献   

16.
TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF’s role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.  相似文献   

17.
The prevalence of obesity and its associated metabolic diseases worldwide has focused attention on understanding the mechanisms underlying adipogenesis. The nuclear receptor PPARgamma has emerged as a central regulator of adipose tissue function and formation. Despite the identification of numerous PPARgamma targets involved in a range of processes, from lipid droplet formation to adipokine secretion, information is still lacking on targets downstream of PPARgamma that directly affect fat cell differentiation. Here we identify HRASLS3 as a novel PPARgamma regulated gene with a role in adipogenesis. HRASLS3 expression increases during the differentiation of preadipocyte cell lines and is highly expressed in white and brown adipose tissue in mice. HRASLS3 expression is induced by PPARgamma ligands in preadipocyte cell lines as well in adipose tissue in vivo. We demonstrate that the HRASLS3 promoter contains a functional PPAR response element and is a direct target for regulation by PPARgamma/RXR heterodimers. Finally, we show that overexpression of HRASLS3 augments PPARgamma-driven lipid accumulation and adipogenesis, whereas siRNA-mediated knockdown of HRASLS3 expression decreases differentiation. Together, these results identify HRASLS3 as one of the downstream effectors of PPARgamma action in adipogenesis.  相似文献   

18.
Ischemia/reperfusion (I/R) injury of the kidney is a common cause of acute renal failure (ARF) and is associated with high morbidity and mortality in the intensive care unit. The mechanisms underlying I/R injury are complex. Studies have shown that complement activation contributes to the pathogenesis of I/R injury in the kidney, but the exact mechanisms of complement activation have not been defined. We hypothesized that complement activation in this setting occurs via the alternative pathway and that mice deficient in complement factor B, an essential component of the alternative pathway, would be protected from ischemic ARF. Wild-type mice suffered from a decline in renal function and had significant tubular injury, particularly in the outer medulla, after I/R. We found that factor B-deficient mice (fB(-/-)) developed substantially less functional and morphologic renal injury after I/R. Furthermore, control wild-type mice had an increase in tubulointerstitial complement C3 deposition and neutrophil infiltration in the outer medulla after I/R, whereas fB(-/-) mice demonstrated virtually no C3 deposition or neutrophil infiltration. Our results demonstrate that complement activation in the kidney after I/R occurs exclusively via the alternative pathway, and that selective inhibition of this pathway provides protection to the kidneys from ischemic ARF.  相似文献   

19.
Human colon tumors have elevated levels of 15-lipoxygenase-1 (15-LO-1), suggesting that 15-LO-1 may play a role in the development of colorectal cancer. Also, 15-LO-1 metabolites can up-regulate epidermal growth factor signaling pathways, which results in an increase in mitogenesis. However, metabolites of 15-LO-1 can serve as ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), and activation of this receptor causes most colon cancer cell lines to undergo a differentiative response and reverse their malignant phenotype. Hence, the role 15-LO-1 plays in colon cancer is not clear. To clarify the role of 15-LO-1 in carcinogenesis, the effect of 15-LO-1 and its metabolites on epidermal growth factor signaling and PPARgamma was investigated. In HCT-116 cells, exogenously added 15-LO-1 metabolites, 13-(S)-hydroxyoctadecadienoic acid, 13-(R)-hydroxyoctadecadienoic acid, and 13-(S)-hydroperoxyoctadecadienoic acid, up-regulated the MAPK signaling pathway, and an increase in PPARgamma phosphorylation was observed. Furthermore, in stable overexpressing 15-LO-1 HCT-116 cells, which produce endogenous 15-LO-1 metabolites, an up-regulation in mitogen-activated protein kinase and PPARgamma phosphorylation was observed. Incubation with a MAPK inhibitor ablated MAPK and PPARgamma phosphorylation. The 15-LO-1 up-regulates MAPK activity and increases PPARgamma phosphorylation, resulting in a down-regulation of PPARgamma activity. Thus, 15-LO-1 metabolites may not only serve as ligands for PPARgamma but can down-regulate PPARgamma activity via the MAPK signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号