首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arai S  Hirai M 《Biophysical journal》1999,76(4):2192-2197
To clarify mechanisms of folding and unfolding of proteins, many studies of thermal denaturation of proteins have been carried out at low protein concentrations because in many cases thermal denaturation accompanies a great tendency of aggregation. As small-angle x-ray scattering (SAXS) measurements are liable to use low-concentration solutions of proteins to avoid aggregation, SAXS has been regarded as very difficult to observe detailed features of thermal structural transitions such as intramolecular structural changes. By using synchrotron radiation SAXS, we have found that the presence of repulsive interparticle interaction between proteins can maintain solute particles separately to prevent further aggregation in thermal denaturation processes and that under such conditions the thermal structural transition of hen egg-white lysozyme (HEWL) holds high reversibility even at 5% w/v HEWL below pH approximately 5. Because of the use of the high concentration of the solutions, the scattering data has enough high-statistical accuracy to discuss the thermal structural transition depending on the structural hierarchy. Thus, the tertiary structural change of HEWL starts from mostly the onset temperature determined by the differential scanning calorimetry measurement, which accompanies a large heat absorption, whereas the intramolecular structural change, corresponding to the interdomain correlation and polypeptide chain arrangement, starts much prior to the above main transition. The present finding of the reversible thermal structural transitions at the high protein concentration is expected to enable us to analyze multiplicity of folding and unfolding processes of proteins in thermal structural transitions.  相似文献   

2.
The GroES protein from Escherichia coli is a well-known member of the molecular chaperones. GroES consists of seven identical 10 kDa subunits, and forms a dome-like oligomeric structure. In order to obtain information on the structural stability and unfolding-refolding mechanism of GroES protein, especially at protein concentrations (0.4-1.2 mM GroES monomer) that would mimic heat stress conditions in vivo, we have performed synchrotron small-angle X-ray scattering (SAXS) experiments. Surprisingly, in spite of the high protein concentration, reversibility in the unfolding-refolding reaction was confirmed by SAXS experiments structurally. Although the unfolding-refolding reaction showed an apparent single transition with a Cm of 1.1 M guanidium hydrochloride, a more detailed analysis of this transition demonstrated that the unfolding mechanism could be best explained by a sequential three-state model, which consists of native heptamer, dissociated monomer, and unfolded monomer. Together with our previous result that GroES unfolded completely via a partially folded monomer according to a three-state model at low protein concentration (5 microM monomer), the unfolding-refolding mechanism of GroES protein could be explained uniformly by the three-state model from low to high protein concentrations. Furthermore, to clarify an ambiguity of the native GroES structure in solution, especially mobile loop structures, we have estimated a solution structure of GroES using SAXS profiles obtained from experiments and simulation analysis. The result suggested that the native structure of GroES in solution was very similar to that seen in GroES-GroEL complex determined by crystallography.  相似文献   

3.
Probing the energy landscape of protein folding/unfolding transition states   总被引:2,自引:0,他引:2  
Previous molecular dynamics (MD) simulations of the thermal denaturation of chymotrypsin inhibitor 2 (CI2) have provided atomic-resolution models of the transition state ensemble that is well supported by experimental studies. Here, we use simulations to further investigate the energy landscape around the transition state region. Nine structures within approximately 35 ps and 3 A C(alpha) RMSD of the transition state ensemble identified in a previous 498 K thermal denaturation simulation were quenched under the quasi-native conditions of 335 K and neutral pH. All of the structures underwent hydrophobically driven collapse in response to the drop in temperature. Structures less denatured than the transition state became structurally more native-like, while structures that were more denatured than the transition state tended to show additional loss of native structure. The structures in the immediate region of the transition state fluctuated between becoming more and less native-like. All of the starting structures had the same native-like topology and were quite similar (within 3.5 A C(alpha) RMSD). That the structures all shared native-like topology, yet diverged into either more or less native-like structures depending on which side of the transition state they occupied on the unfolding trajectory, indicates that topology alone does not dictate protein folding. Instead, our results suggest that a detailed interplay of packing interactions and interactions with water determine whether a partially denatured protein will become more native-like under refolding conditions.  相似文献   

4.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   

5.
Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structures.  相似文献   

6.
Various proteins have been shown to form various aggregated structures including the filamentous aggregates known as amyloid fibrils depending on the solution conditions. Hen egg white lysozyme (HEWL) is one of the proteins that form the amyloid fibrils. To gain insight into the mechanism of this polymorphism of the aggregated structures, we employed a model system consisting of HEWL, pure water, and ethanol, and investigated the kinetic process of the fibril formation in various salt concentrations with time-resolved neutron scattering. It was shown that by addition of NaCl in a range between 0.3 mM and 1.0 mM to HEWL solution in 90% ethanol, gelation occurred, and this gelation proceeded through a two-step process: the lateral association of the protofilaments, followed by the cross-linking of these fibrils formed. Both the structures of the fibrils and the rate of the gelation depended on NaCl concentration. The average structures of the fibrils formed at 1.0 mM NaCl were characterized by the radius of gyration of their cross-section (45.9(+/-0.4)A) and the number of the protofilaments within the fibril (4.10(+/-0.12)), corresponding to the mature amyloid fibrils. A range of intermediate structures was formed below 1 mM NaCl. Above 2 mM NaCl, precipitation occurred because of the formation of amorphous aggregates. Here the branch point to the formation of the mature amyloid fibrils or to the amorphous aggregates was after the formation of the protofilaments. Sensitivity of the aggregated structures to salt concentration suggests that electrostatic interaction plays an essential role in the formation of these structures. The structural diversity both in the fibrils and the aggregated structures of the fibrils can be interpreted in terms of the difference in the degree of the electrostatic shielding at different salt concentrations.  相似文献   

7.
In the last decade, several studies have reported that Wide-Angle X-ray Scattering (WAXS) from protein in solution contains valuable information about protein secondary and tertiary structures. Nevertheless, the use of such information will remain limited until a clear understanding of the correlation between protein structural elements and WAXS profile regions is established. In this work, large number of possible protein conformations is generated using comparative modeling (LOOPP & PHYRE servers) of nine different proteins representing six main protein classes (SCOP database). After model validation (SAVES server), protein structural elements of the selected models are retrieved (Swiss PDB Viewer & VORONOIA) and their corresponding WAXS profiles are generated (CRYSOL). The correlations between seven elements of protein structure (alpha helix, beta sheet and random coil content, alpha to beta ratio, alpha to random coil ratio, average packing density and number of residues) and seven WAXS profile parameters (Full Width at Half Maximum of two main scattering peaks of interest, their areas, positions and ratio of intensities) are investigated. Results revealed high (up to 0.75) and moderate (0.30–0.50) correlations between some of the suggested profile parameters and investigated protein structural elements indicating that these parameters represent a useful probe of protein conformation. Moreover, a high observed correlation between the degree of fitting of model to reference structures and the degree of fitting of their corresponding WAXS profiles suggests that the latter can be used in experimental model validation.  相似文献   

8.
Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A.  相似文献   

9.
Wide-angle X-ray solution scattering (WAXS) patterns contain substantial information about the three-dimensional structure of a protein. Although WAXS data have far less information than is required for determination of a full three-dimensional structure, the actual amount of information contained in a WAXS pattern has not been carefully quantified. Here we carry out an analysis of the amount of information that can be extracted from a WAXS pattern and demonstrate that it is adequate to estimate the secondary-structure content of a protein and to strongly limit its possible tertiary structures. WAXS patterns computed from the atomic coordinates of a set of 498 protein domains representing all of known fold space were used as the basis for constructing a multidimensional space of all corresponding WAXS patterns (‘WAXS space’). Within WAXS space, each scattering pattern is represented by a single vector. A principal components analysis was carried out to identify those directions in WAXS space that provide the greatest discrimination among patterns. The number of dimensions that provide significant discrimination among protein folds agrees well with the number of independent parameters estimated from a naïve Shannon sampling theorem approach. Estimates of the relative abundances of secondary structures were made using training/test sets derived from this data set. The average error in the estimate of α-helical content was 11%, and of β-sheet content was 9%. The distribution of proteins that are members of the four structure classes, α, β, α/β and α+β, are well separated in WAXS space when data extending to a spacing of 2.2 Å are used. Quantification of the information embedded within a WAXS pattern indicates that these data can be used as a powerful constraint in homology modeling of protein structures.  相似文献   

10.
Dioctadecyldimethylammonium bromide (DODAB) is a double chain cationic lipid, which assembles as bilayer structures in aqueous solution. The precise structures formed depend on, e.g., lipid concentration and temperature. We here combine differential scanning calorimetry (DSC) and X-ray scattering (SAXS and WAXS) to investigate the thermal and structural behavior of up to 120 mM DODAB in water within the temperature range 1–70°C. Below 1 mM, this system is dominated by unilamellar vesicles (ULVs). Between 1 and 65 mM, ULVs and multilamellar structures (MLSs) co-exist, while above 65 mM, the MLSs are the preferred structure. Depending on temperature, DSC and X-ray data show that the vesicles can be either in the subgel (SG), gel, or liquid crystalline (LC) state, while the MLSs (with lattice distance d  = 36.7 Å) consist of interdigitated lamellae in the SG state, and ULVs in the LC state (no Bragg peak). Critical temperatures related to the thermal transitions of these bilayer structures obtained in the heating and cooling modes are reported, together with the corresponding transition enthalpies.  相似文献   

11.
Wide-angle x-ray scattering (WAXS) experiments of biomolecules in solution have become increasingly popular because of technical advances in light sources and detectors. However, the structural interpretation of WAXS profiles is problematic, partly because accurate calculations of WAXS profiles from structural models have remained challenging. In this work, we present the calculation of WAXS profiles from explicit-solvent molecular dynamics (MD) simulations of five different proteins. Using only a single fitting parameter that accounts for experimental uncertainties because of the buffer subtraction and dark currents, we find excellent agreement to experimental profiles both at small and wide angles. Because explicit solvation eliminates free parameters associated with the solvation layer or the excluded solvent, which would require fitting to experimental data, we minimize the risk of overfitting. We further find that the influence from water models and protein force fields on calculated profiles are insignificant up to q ≈ 15 nm?1. Using a series of simulations that allow increasing flexibility of the proteins, we show that incorporating thermal fluctuations into the calculations significantly improves agreement with experimental data, demonstrating the importance of protein dynamics in the interpretation of WAXS profiles. In addition, free MD simulations up to one microsecond suggest that the calculated profiles are highly sensitive with respect to minor conformational rearrangements of proteins, such as an increased flexibility of a loop or an increase of the radius of gyration by  <  1%. The present study suggests that quantitative comparison between MD simulations and experimental WAXS profiles emerges as an accurate tool to validate solution ensembles of biomolecules.  相似文献   

12.
Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved β-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state.  相似文献   

13.
Hemoglobin (Hb), an oxygen‐binding protein composed of four subunits (α1, α2, β1, and β2), is a well‐known example of allosteric proteins that are capable of cooperative ligand binding. Despite decades of studies, the structural basis of its cooperativity remains controversial. In this study, we have integrated coarse‐grained (CG) modeling, all‐atom simulation, and structural data from X‐ray crystallography and wide‐angle X‐ray scattering (WAXS), aiming to probe dynamic properties of the two structural states of Hb (T and R state) and the transitions between them. First, by analyzing the WAXS data of unliganded and liganded Hb, we have found that the structural ensemble of T or R state is dominated by one crystal structure of Hb with small contributions from other crystal structures of Hb. Second, we have used normal mode analysis to identify two distinct quaternary rotations between the α1β1 and α2β2 dimer, which drive the transitions between T and R state. We have also identified the hot‐spot residues whose mutations are predicted to greatly change these quaternary motions. Third, we have generated a CG transition pathway between T and R state, which predicts a clear order of quaternary and tertiary changes involving α and β subunits in Hb. Fourth, we have used the accelerated molecular dynamics to perform an all‐atom simulation starting from the T state of Hb, and we have observed a transition toward the R state of Hb. Further analysis of crystal structural data and the all‐atom simulation trajectory has corroborated the order of quaternary and tertiary changes predicted by CG modeling. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
BACKGROUND: Do proteins that have the same structure fold by the same pathway even when they are unrelated in sequence? To address this question, we are comparing the folding of a number of different immunoglobulin-like proteins. Here, we present a detailed protein engineering phi value analysis of the folding pathway of TI I27, an immunoglobulin domain from human cardiac titin. RESULTS: TI I27 folds rapidly via a kinetic intermediate that is destabilized by most mutations. The transition state for folding is remarkably native-like in terms of solvent accessibility. We use phi value analysis to map this transition state and show that it is highly structured; only a few residues close to the N-terminal region of the protein remain completely unfolded. Interestingly, most mutations cause the transition state to become less native-like. This anti-Hammond behavior can be used as a novel means of obtaining additional structural information about the transition state. CONCLUSIONS: The residues that are involved in nucleating the folding of TI I27 are structurally equivalent to the residues that form the folding nucleus in an evolutionary unrelated fibronectin type III protein. These residues form part of the common structural core of Ig-like domains. The data support the hypothesis that interactions essential for defining the structure of these beta sandwich proteins are also important in nucleation of folding.  相似文献   

15.
In aqueous solution some proteins undergo large-scale movements of secondary structures, subunits or domains, referred to as protein “breathing”, that define a native-state ensemble of structures. These fluctuations are sensitive to the nature and concentration of solutes and other proteins and are thereby expected to be different in the crowded interior of a cell than in dilute solution. Here we use a combination of wide angle X-ray scattering (WAXS) and computational modeling to derive a quantitative measure of the spatial scale of conformational fluctuations in a protein solution. Concentration-dependent changes in the observed scattering intensities are consistent with a model of structural fluctuations in which secondary structures undergo rigid-body motions relative to one another. This motion increases with decreasing protein concentration or increasing temperature. Analysis of a set of five structurally and functionally diverse proteins reveals a diversity of kinetic behaviors. Proteins with multiple disulfide bonds exhibit little or no increase in breathing in dilute solutions. The spatial extent of structural fluctuations appears highly dependent on both protein structure and concentration and is universally suppressed at very high protein concentrations.  相似文献   

16.
X-ray solution scattering in both the small-angle (SAXS) and wide-angle (WAXS) regimes is making an increasing impact on our understanding of biomolecular complexes. The accurate calculation of WAXS patterns from atomic coordinates has positioned the approach for rapid growth and integration with existing Structural Genomics efforts. WAXS data are sensitive to small structural changes in proteins; useful for calculation of the pair-distribution function at relatively high resolution; provides a means to characterize the breadth of the structural ensemble in solution; and can be used to identify proteins with similar folds. WAXS data are often used to test structural models, identify structural similarities and characterize structural changes. WAXS is highly complementary to crystallography and NMR. It holds great potential for the testing of structural models of proteins; identification of proteins that may exhibit novel folds; characterization of unfolded or natively disordered proteins; and detection of structural changes associated with protein function.  相似文献   

17.
Recent findings implicate that fibrillation products, the protein aggregates formed during the various steps leading to formation of mature fibrils, induce neurotoxicity predominantly in their intermediate oligomeric state. This has been shown to occur by increasing membrane permeability, eventually leading to cell death. Despite accumulating reports describing mechanisms of membrane permeabilization by oligomers in model membranes, studies directly targeted at characterizing the events occurring in biological membranes are rare. In the present report, we describe interaction of the original native structure, prefibrils and fibrils of hen egg white lysozyme (HEWL) with mitochondrial membranes, as an in vitro biological model, with the aim of gaining insight into possible mechanism of cytotoxicity at the membrane level. These structures were first characterized using a range of techniques, including fluorescence, size-exclusion chromatography, dynamic light scattering, transmission electron microscopy, dot blot analysis and circular dichroism. HEWL oligomers were found to be flexible/hydrophobic structures with the capacity to interact with mitochondrial membranes. Possible permeabilization of mitochondria was explored utilizing sensitive fluorometric and luminometric assays. Results presented demonstrate release of mitochondrial enzymes upon exposure to HEWL oligomers, but not native enzyme monomer or mature fibrils, in a concentration-dependent manner. Release of cytochrome c was also observed, as reported earlier, and membrane stabilization promoted by addition of calcium prevented release. Moreover, the oligomer-membrane interaction was influenced by high concentrations of NaCl and spermine. The observed release of proteins from mitochondria is suggested to occur by a nonspecific perturbation mechanism.  相似文献   

18.
Hierarchical organization of free energy landscape (FEL) for native globular proteins has been widely accepted by the biophysics community. However, FEL of native proteins is usually projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme (HEWL), and carried out detailed conformational analysis based on backbone torsional degrees of freedom (DOF). Our results demonstrated that at micro-second and coarser temporal resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying the dominant structural ensemble that serves as the hub of conformational transitions. However, at 100ns and finer temporal resolutions, conformational substates of HEWL exhibit network-like topology, crystal structures are associated with kinetic traps that are important but not dominant ensembles. Backbone torsional state transitions on time scales ranging from nanoseconds to beyond microseconds were found to be associated with various types of molecular interactions. Even at nanoseconds temporal resolution, the number of conformational substates that are of statistical significance is quite limited. These observations suggest that detailed analysis of conformational substates at multiple temporal resolutions is both important and feasible. Transition state ensembles among various conformational substates at microsecond temporal resolution were observed to be considerably disordered. Life times of these transition state ensembles are found to be nearly independent of the time scales of the participating torsional DOFs.  相似文献   

19.
The chaperone-like protein α-crystallin is a ~35 subunit hetero-oligomer consisting of αA and αB subunits in a 3:1 molar ratio and has the function of maintaining eye lens transparency. We studied the thermal denaturation of α-crystallin by differential scanning calorimetry (DSC), circular dichroism (CD), and dynamic light scattering (DLS) as a function of pH. Our results show that between pH 7 and 10 the protein undergoes a reversible thermal transition. However, the thermodynamic parameters obtained by DSC are inconsistent with the complete denaturation of an oligomeric protein of the size of α-crystallin. Accordingly, the CD data suggest the presence of extensive residual secondary structure above the transition temperature. Within the pH range from 4 to 7 the increased aggregation propensity around the isoelectric point (pI ~ 6) precludes observation of a thermal transition. As pH decreases below 4 the protein undergoes a substantial unfolding. The secondary structure content of the acid-denatured state shows little sensitivity to heating. We propose that the thermal transition above pH 7 and the acid-induced transition at ambient temperature result in predominant denaturation of the αB subunit. Although the extent of denaturation of the αA subunit cannot be estimated from the current data, the existence of a native-like conformation is suggested by the preserved association of the subunits and the chaperone-like activity. A key difference between the thermal and the acid denaturation is that the latter is accompanied by dissociation of αB subunits from the remaining αA-oligomer, as supported by DLS studies.  相似文献   

20.
It is becoming increasingly clear that characterization of the protein ensemble-the collection of all conformations of which the protein is capable-will be a critical step in developing a full understanding of the linkage between structure, dynamics, and function. X-ray solution scattering in the small angle (SAXS) and wide-angle (WAXS) regimes represents an important new window to exploring the behavior of ensembles. The characteristics of the ensemble express themselves in X-ray solution scattering data in predictable ways. Here we present an overview of the effect that structural diversity intrinsic to protein ensembles has on scattering data. We then demonstrate the observation of these effects in scattering from four molecular systems; myoglobin; ubiquitin; alcohol dehydrogenase; and HIV protease; and demonstrate the modulation of these ensembles by ligand binding, mutation, and environmental factors. The observations are analyzed quantitatively in terms of the average spatial extent of structural fluctuations occurring within these proteins under different experimental conditions. The insights which these analyses support are discussed in terms of the function of the various proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号