首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
2.
3.
4.
5.
We have developed a novel technique, named DamID, for the identification of DNA loci that interact in vivo with specific nuclear proteins in eukaryotes. By tethering Escherichia coli DNA adenine methyltransferase (Dam) to a chromatin protein, Dam can be targeted in vivo to native binding sites of this protein, resulting in local DNA methylation. Sites of methylation can subsequently be mapped using methylation-specific restriction enzymes or antibodies. We demonstrate the successful application of DamID both in Drosophila cell cultures and in whole flies. When Dam is tethered to the DNA-binding domain of GAL4, targeted methylation is limited to a region of a few kilobases surrounding a GAL4 binding sequence. Using DamID, we identified a number of expected and unexpected target loci for Drosophila heterochromatin protein 1. DamID has potential for genome-wide mapping of in vivo targets of chromatin proteins in various eukaryotes.  相似文献   

6.
Rosenberg MI  Parkhurst SM 《Cell》2002,109(4):447-458
Yeast SIR2 is a NAD+-dependent histone deacetylase required for heterochromatic silencing at telomeres, rDNA, and mating-type loci. We find that the Drosophila homolog of Sir2 (dSir2) also encodes deacetylase activity and is required for heterochromatic silencing, but unlike ySir2, is not required for silencing at telomeres. We show that dSir2 interacts genetically and physically with members of the Hairy/Deadpan/E(Spl) family of bHLH euchromatic repressors, key regulators of Drosophila development. dSir2 is an essential gene whose loss of function results in both segmentation defects and skewed sex ratios, associated with reduced activities of the Hairy and Deadpan bHLH repressors. These results indicate that Sir2 in higher organisms plays an essential role in both euchromatic repression and heterochromatic silencing.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Degringolade (Dgrn) encodes a Drosophila SUMO-targeted ubiquitin ligase (STUbL) protein similar to that of mammalian RNF4. Dgrn facilitates the ubiquitylation of the HES protein Hairy, which disrupts the repressive activity of Hairy by inhibiting the recruitment of its cofactor Groucho. We show that Hey and all HES family members, except Her, interact with Dgrn and are substrates for its E3 ubiquitin ligase activity. Dgrn displays dynamic subcellular localization, accumulates in the nucleus at times when HES family members are active and limits Hey and HES family activity during sex determination, segmentation and neurogenesis. We show that Dgrn interacts with the Notch signaling pathway by it antagonizing the activity of E(spl)-C proteins. dgrn null mutants are female sterile, producing embryos that arrest development after two or three nuclear divisions. These mutant embryos exhibit fragmented or decondensed nuclei and accumulate higher levels of SUMO-conjugated proteins, suggesting a role for Dgrn in genome stability.  相似文献   

16.
17.
C-Terminal binding protein (CtBP) interacts with a highly conserved amino acid motif (PXDLS) at the C terminus of adenovirus early region 1A (AdE1A) protein. This amino acid sequence has recently been demonstrated in the mammalian protein C-terminal interacting protein (CtIP) and a number of Drosophila repressors including Snail, Knirps and Hairy. In the study described here we have examined the structures of synthetic peptides identical to the CtBP binding sites on these proteins using NMR spectroscopy. It has been shown that peptides identical to the CtBP binding site in CtIP and at the N terminus of Snail form a series of beta-turns similar to those seen in AdE1A. The PXDLS motif towards the C terminus of Snail forms an alpha-helix. However, the motifs in Knirps and Hairy did not adopt well-defined structures in TFE/water mixtures as shown by the absence of medium range NOEs and a high proportion of signal overlap. The affinities of peptides for Drosophila and mammalian CtBP were compared using enzyme-linked immunosorbent assay. CtIP, Snail (N-terminal peptide) and Knirps peptides all bind to mammalian CtBP with high affinity (K(i) of 1.04, 1.34 and 0.52 microM, respectively). However, different effects were observed with dCtBP, most notably the affinity for the Snail (N-terminal peptide) and Knirps peptides were markedly reduced (K(i) of 332 and 56 microM, respectively) whilst the Hairy peptide bound much more strongly (K(i) for dCtBP of 6.22 compared to 133 microM for hCtBP). In addition we have shown that peptides containing identical PXDLS motifs but with different N and C terminal sequences have appreciably different affinities for mammalian CtBP and different structures in solution. We conclude that the factors governing the interactions of CtBPs with partner proteins are more complex than simple possession of the PXDLS motif. In particular the overall secondary structures and amino acid side chains in the binding sites of partner proteins are of importance as well as possible global structural effects in both members of the complex. These data are considered evidence for a multiplicity of CtBPs and partner proteins in the cell.  相似文献   

18.
19.
Uncovering the direct regulatory targets of doublesex (dsx) and fruitless (fru) is crucial for an understanding of how they regulate sexual development, morphogenesis, differentiation and adult functions (including behavior) in Drosophila melanogaster. Using a modified DamID approach, we identified 650 DSX-binding regions in the genome from which we then extracted an optimal palindromic 13 bp DSX-binding sequence. This sequence is functional in vivo, and the base identity at each position is important for DSX binding in vitro. In addition, this sequence is enriched in the genomes of D. melanogaster (58 copies versus approximately the three expected from random) and in the 11 other sequenced Drosophila species, as well as in some other Dipterans. Twenty-three genes are associated with both an in vivo peak in DSX binding and an optimal DSX-binding sequence, and thus are almost certainly direct DSX targets. The association of these 23 genes with optimum DSX binding sites was used to examine the evolutionary changes occurring in DSX and its targets in insects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号