首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the sequence of the Drosophila maternal effect gene swallow, one of the genes whose product is required for the localization of bicoid message during Drosophila oo-genesis. The inferred swallow protein contains a domain that is predicted to be an amphipathic α-helix similar to those implicated in protein:protein associations in other systems. Another part of the predicted protein appears to be a diverged RNA-binding motif. We discuss these structural features in light of the function of the swallow protein in the bicoid message localization process.  相似文献   

2.
3.
We have examined cytoskeletal requirements for bicoid (bcd) RNA localization during Drosophila oogenesis. bcd is an anterior morphogen whose proper function relies on the localization of its messenger RNA to the anterior cortex of the egg. Drugs that depolymerize microtubules perturb all aspects of bcd RNA localization. During recovery from drug treatment, bcd RNA relocalizes to the oocyte cortex, suggesting that the localization machinery is a component of the cortical cytoskeleton. Taxol, a drug that stabilizes microtubules, also effectively disrupts bcd RNA localization, and the effects of taxol treatments on exuperantia and swallow mutants suggest general roles for these gene products in the multi-step bcd RNA localization process.  相似文献   

4.
M L Delbridge  L E Kelly 《FEBS letters》1990,274(1-2):141-145
Using polyclonal antibodies raised against a Drosophila Ca2(+)-binding protein (DCABP-23), clones were isolated from a Drosophila head cDNA library constructed in the expression vector lambda gt11. Two non-homologous clones have been isolated and are being subjected to sequence analysis. One of these clones, though not encoding DCABP-23, does encode a Drosophila cystatin-like protein. This presumed Drosophila cystatin shows homology to mammalian cystatins, chicken egg white cystatin and the rice oryzacystatin. The Drosophila cystatin has been mapped, by in situ hybridization, to region 88C on the right arm of the third chromosome.  相似文献   

5.
We report here the genetic, molecular, and functional characterization of the Drosophila melanogaster minifly (mfl) gene. Genetic analysis shows that mfl is essential for Drosophila viability and fertility. While P-element induced total loss-of-function mutations cause lethality, mfl partial loss-of-function mutations cause pleiotropic defects, such as extreme reduction of body size, developmental delay, hatched abdominal cuticle, and reduced female fertility. Morphological abnormalities characteristic of apoptosis are found in the ovaries, and a proportion of eggs laid by mfl mutant females degenerates during embryogenesis. We show that mfl encodes an ubiquitous nucleolar protein that plays a central role in ribosomal RNA processing and pseudouridylation, whose known eukaryotic homologues are yeast Cfb5p, rat NAP57 and human dyskerin, encoded by the gene responsible for the X-linked dyskeratosis congenita disease. mfl genetic analysis represents the first in vivo functional characterization of a member of this highly conserved gene family from higher eukaryotes. In addition, we report that mfl hosts an intron encoded box H/ACA snoRNA gene, the first member of this class of snoRNAs identified so far from Drosophila.  相似文献   

6.
Drosophila bicoid mRNA is synthesized in the nurse cells and transported to the oocyte where microtubules and Exuperantia protein mediate localization to the anterior pole. Fluorescent bicoid mRNA injected into the oocyte displays nonpolar microtubule-dependent transport to the closest cortical surface, and the oocyte microtubule cytoskeleton lacks clear axial asymmetry. Nonetheless, bicoid mRNA injected into the nurse cell cytoplasm, withdrawn, and injected into a second oocyte shows microtubule-dependent transport to the anterior cortex. Nurse cells require microtubules and Exuperantia to support anterior transport of bicoid mRNA, and microtubules are required for bicoid mRNA-Exuperantia particle coassembly. We propose that microtubule-dependent Exuperantia-bicoid mRNA complex formation in the nurse cell cytoplasm allows anterior-specific transport on a grossly nonpolar oocyte microtubule network.  相似文献   

7.
8.
9.
Staufen, a gene required to localize maternal RNAs in the Drosophila egg.   总被引:25,自引:0,他引:25  
The posterior group gene staufen is required both for the localization of maternal determinants to the posterior pole of the Drosophila egg and for bicoid RNA to localize correctly to the anterior pole. We report the cloning and sequencing of staufen and show that staufen protein is one of the first molecules to localize to the posterior pole of the oocyte, perhaps in association with oskar RNA. Once localized, staufen is found in the polar granules and is required to hold other polar granule components at the posterior pole. By the time the egg is laid, staufen protein is also concentrated at the anterior pole, in the same region as bicoid RNA.  相似文献   

10.
11.
Localization of bicoid (bcd) messenger RNA to the anterior pole of the Drosophila oocyte requires the exuperantia ( exu), swallow (swa) and staufen (stau) genes. We show here that Swa protein transiently co-localizes with bcd RNA in mid-oogenesis. Swa also localizes to the anterior pole of the oocyte in the absence of bcd RNA. This localization does not require Exu, but depends on intact microtubules. In mutant ovaries with duplicated polarity of microtubules, Swa and bcd RNA are ectopically localized at the posterior pole, as well as being present at the anterior pole. We identify dynein light chain-1 (Ddlc-1), a component of the minus-end-directed microtubule motor cytoplasmic dynein, as a Swa-binding protein. We propose that Swa acts as an adaptor for the dynein complex and thereby enables dynein to transport bcd RNA along microtubules to their minus ends at the anterior pole of the oocyte.  相似文献   

12.
13.
R E Boswell  A P Mahowald 《Cell》1985,43(1):97-104
Developmental analysis of a newly isolated maternal effect grandchildless mutant, tudor (tud), in Drosophila melanogaster indicates that tud+ activity is required during oogenesis for the determination and/or formation of primordial germ cells (pole cells) and for normal embryonic abdominal segmentation. Regardless of their genotype, progeny of females homozygous for strong alleles (tud1 and tud3) never form pole cells, apparently lack polar granules in the germ plasm, and approximately 40% of them die during late embryogenesis exhibiting severe abdominal segmentation pattern defects. Females carrying weak allele, tud4, produce progeny with some functional pole cells and form polar granules approximately one-third the size of those observed in wild-type oocytes and embryos. No segmentation abnormalities are observed in the inviable embryos derived from tud4/tud4 females.  相似文献   

14.
15.
The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as a morphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal 'dorsal group' genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactus function results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus alleles. In contrast to the loss-of-function alleles, gain-of-function alleles of cactus cause a dorsalization of the embryonic pattern. Genetic studies indicate that they are not overproducers of normal activity, but rather synthesize products with altered function. Epistatic relationships of cactus with dorsal group genes were investigated by double mutant analysis. The dorsalized phenotype of the dorsal mutation is unchanged upon loss of cactus activity. This result implies that cactus acts via dorsal and has no independent morphogen function. In all other dorsal group mutant backgrounds, reduction of cactus function leads to embryos that express ventrolateral pattern elements and have increased nuclear uptake of the dorsal protein at all positions along the dorsoventral axis. Thus, the cactus gene product can prevent nuclear transport of dorsal protein in the absence of function of the dorsal group genes. Genetic and cytoplasmic transplantation studies suggest that the cactus product is evenly distributed along the dorsoventral axis. Thus the inhibitory function that cactus product exerts on the nuclear transport of the dorsal protein appears to be antagonized on the ventral side. We discuss models of how the action of the dorsal group genes might counteract the cactus function ventrally.  相似文献   

16.
The localization of mRNAs to discrete cytoplasmic sites is important for the function of many, and perhaps all, cells. Many mRNAs are thought to be localized in a directed fashion along microtubule tracts. This appears to be the case for several mRNAs that are synthesized in Drosophila nurse cells and then transported into, and localized within, the oocyte. In this report, we compare the transport/localization kinetics and dynamics of three such mRNAs, K10, bicoid, and oskar. We generated flies carrying heat shock—K10, -bicoid, or -oskar fusion genes, which allowed us to carry out the molecular genetics equivalent of a pulse chase experiment. Our analyses indicate that K10, bicoid, and oskar mRNA transport and localization are a continuous process involving multiple movements of the same mRNA molecules. The transport and early localization dynamics of the three mRNAs are indistinguishable from each other and, in order, include accumulation in the apical regions of nurse cells, transport to the posterior pole of the oocyte, and movement to the oocyte's anterior cortex at stage 8. We also show that the rate of transport is the same in each case, ∼︁1.1 μm/min. Only after stage 8 are RNA-specific movements seen The similarities in the transport/early localization kinetics and dynamics of K10, bicoid, and oskar mRNAs suggest that such events are mediated by a common set of factors. We also observe that all three mRNAs localize to the apical regions of somatic follicle cells when expressed in such cells, suggesting that the transport/early localization factors are widespread and involved in the localization of mRNAs in many tissues. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
Neurons and glial cells provide guidance cues for migrating neurons. We show here that migrating epithelial cells also contact specific neurons and glia during their pathfinding, and we describe the first gene required in the process. In wild-type Drosophila embryos, the ganglionic tracheal branch navigates a remarkably complex path along specific neural and glial substrata, switching substrata five times before reaching its ultimate target in the CNS. In adrift mutants, ganglionic branches migrate normally along the intersegmental nerve, but sporadically fail to switch to the segmental nerve and enter the CNS; they wind up meandering along the ventral epidermis instead. adrift encodes a novel nuclear protein with an evolutionarily conserved motif. The gene is required in the trachea and is expressed in the leading cells of migrating ganglionic branches where it is induced by the branchless FGF pathway. We propose that Adrift regulates expression of tracheal genes required for pathfinding on the segmental nerve, and FGF induction of adrift expression in migrating tracheal cells promotes the switch from the intersegmental to the segmental nerve.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号