首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the oocytes of Xenopus laevis grow and develop they accumulate vast stores of mRNA for use during early embryogenesis. The stored mRNA is stabilized and may be prevented from being translated in oocytes by the binding of a defined set of oocyte-specific proteins to form messenger RNP (mRNP) particles. A key event in the interaction of protein with mRNA is the phosphorylation of those few polypeptides that bind directly to all classes of polyadenylated mRNA. In this study we show that the phosphorylating enzyme (protein kinase), in addition to its target phosphoproteins, is an integral component of the mRNP particles. This association extends through various stages in the formation and use of the mRNP particles. Examination of material from oocytes of an early developmental stage (early stage 1), when the level of accumulated mRNA is low, reveals an excess of protein particles free of RNA, sedimenting at 6-18 S, and containing protein kinase activity and mRNA-binding phosphoproteins. At stages of maximum rate of mRNA accumulation (stages 1 and 2), the phosphoproteins and kinase are found primarily in individual mRNP particles that sediment at 40-80 S. As ribosomes become abundant (stages 2 and 3), the mRNP particles tend to interact with ribosomal subunits, at least in vitro, to form blocked translation initiation complexes that sediment at 80-110 S. These results are compared with observation on stored mRNP in other developmental systems.  相似文献   

2.
The stored mRNP particles of Xenopus oocytes contain protein kinase activity and two major phosphoproteins of 60 kDa (pp60) and 56 kDa (pp56). These proteins can be phospholabelled in the particles either in vivo or in vitro and then isolated by SDS-PAGE. On renaturing pp60 in the presence of globin mRNA, a stable RNA-protein complex is formed. The complex has a uniform density in Cs salt gradients, corresponding to the binding of about 10 protein molecules to each mRNA, probably at the poly(A) sequence. Compared with uncomplexed mRNA, the RNP complex is translated poorly both in vitro and in vivo. Translation of the complex can be regained after treatment with protein phosphatase. It is shown that dephosphorylation destabilizes the binding of protein to RNA, making the mRNA accessible for translation. Studies with native mRNP particles show that their translation also can be enhanced by dephosphorylation.  相似文献   

3.
4.
Considering the eventuality of an interaction between the two post-translational modifications, phosphorylation and ADP-ribosylation, we investigated the possibility of phosphorylation of the mRNP polyADPR polymerase by a protein kinase C associated to these particles. We demonstrated that cytoplasmic poly (ADP-ribose) polymerase associated with ribonucleoprotein particles containing silent mRNA is phosphorylated by a specifically activated endogenous protein kinase C which in turn induces an inhibition of the polymerase activity. In the absence of protein kinase C activators the mRNP polyADPR-P is also phosphorylated but without changes of its enzymatic activity.  相似文献   

5.
M le Maire  H Denis 《Biochimie》1987,69(5):485-493
When incubated with ATP and a labeled amino acid, the 42S particles from early oocytes of Xenopus laevis and Tinca tinca incorporate radioactivity into tRNA and into a high molecular mass material which can be identified as protein. This incorporation is totally independent of ribosomes of cytosolic, mitochondrial or bacterial origin. The incorporated amino acids are linked to a broad spectrum of proteins by covalent bonds. Simple treatments such as incubation in buffer or addition of synthetic polyribonucleotides can inhibit the protein-labeling activity of the particles without affecting their tRNA aminoacylation activity. The former activity corresponds either to an amino acid polymerization reaction or to a protein-modifying reaction of a novel type. No involvement of mRNA in this process has been demonstrated. The alleged amino acid polymerization activity of the 42S particles could be a consequence of the conditions provided to aminoacyl tRNA by the tRNA-binding sites of the particles. These conditions are likely to allow the peptidyl transfer reaction to take place, although at a much lower rate than in the ribosome.  相似文献   

6.
7.
8.
9.
The mRNA encoding ribosomal protein L32 redistributes from untranslated subribosomal particles into polysomes after mitogenic activation of quiescent T-lymphocytes and fibroblasts. To identify the regions of the L32 mRNA which are important in regulating its cytoplasmic location we constructed a plasmid containing the murine L32 cDNA under the control of the Rous sarcoma virus (RSV) long terminal repeat promoter and introduced this construct into murine 3T3 fibroblasts. The mRNA transcribed from the RSV-L32 construct redistributed from subribosomal particles into polysomes in response to mitogenic activation in a manner similar to endogenous L32 mRNA. A conserved polypyrimidine region present at the 5' terminus of all ribosomal protein mRNAs is required for translational regulation of L32 mRNA since deletion of this sequence resulted in a mRNA that was not sequestered in subribosomal particles in quiescent cells. A radioactive RNA probe containing the first 34 nucleotides of the L32 5'-untranslated region, including the polypyrimidine region, specifically interacted with a protein of about 56 kDa. This protein did not bind detectably to RNA probes lacking the polypyrimidine sequence. Binding activity was similar in protein extracts made from resting and activated cells, suggesting that binding of the 56-kDa protein as measured in this assay is not regulated. This protein is a member of what may be an emerging family of polyribopyrimidine-binding proteins with diverse biochemical functions.  相似文献   

10.
11.
The ability of 26S proteasomes from the human proerythroleukaemic cell line K562 to degrade high-molecular-weight cytoplasmic RNAs, particularly specific messenger RNA, has been detected. The addition of hemin to K562 cells in the culture media leads to redistribution of proteasomes and their migration mainly to the cytoplasm. The human wild type p53 gene mRNA was shown to be specifically nucleolized by proteasomes. These particles displayed endoribonuclease activity towards mRNA for Renilla sp. luciferase. Proteasomes also specifically degraded Alu-containing mRNAs. A supposition is made about the involvement of proteasomes in stability control of specific RNA groups.  相似文献   

12.
Reovirus progeny subviral particles synthesize uncapped mRNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
H Zarbl  D Skup    S Millward 《Journal of virology》1980,34(2):497-505
Reovirus progeny subviral particles were isolated from L-cells at late times postinfection. It has been shown (D. Skup and S. Millward, J. Virol. 34: 490--496, 1980) that these progeny subviral particles have masked capping enzymes, indicating that mRNA synthesized by these particles should be uncapped. When progeny subviral particles were used for mRNA synthesis in vitro, they failed to incorporate the beta-phosphate of [beta-32P]GTP into the 5' terminal. Direct analysis of reovirus mRNA synthesized by progeny subviral particles in the presence of either [alpha-32P]GTP or [alpha-32P]CTP indicated that the 5' terminal was uncapped, having the structure pGpC... The implications of this finding to the reovirus replicative cycle are discussed.  相似文献   

13.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

14.
15.
16.
Intracellular applications of ribozymes have been limited partly by the availability of suitable high-expression systems. For RNA effectors, consideration of an RNA virus vector system for delivery and expression is reasonable. We show that alphavirus replicons can be highly efficient nonintegrating ribozyme-expressing vectors. Using a hammerhead ribozyme targeted to a highly conserved sequence in the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, we demonstrate that a full-length 8.3-kb Semliki Forest virus ribozyme (SFVRz) chimeric RNA maintains catalytic activity. SFVRz is packaged into viral particles, and these particles transduce mammalian cells efficiently. SFVRz-transduced BHK cells were found to produce large amounts of genomic and subgenomic forms of ribozyme-containing RNAs that are functional in cleaving a U5-tagged mRNA. The RNase protection assay shows that HIV-1 U5-chloramphenicol acetyltransferase mRNA expressed intracellularly from an RNA polymerase II promoter is quantitatively eliminated in SFVRz-transduced BHK cells.  相似文献   

17.
Abstract— Brain RNP particles were characterized to determine whether they play a role in the regulation of brain protein synthesis. RNP particles were isolated from the postribosomal supernatant of cerebral hemispheres of young rabbits, employing conditions which minimize adventitious protein-RNA interactions. Brain RNP particles consist of a different set of proteins compared to proteins associated with either 40 and 60s ribosomal subunits or polysomal mRNA. Poly(A+)mRNA from brain RNP particles stimulates the incorporation of [35S]methionine in a wheat embryo cell-free system and codes for a different set of proteins compared to poly(A+)mRNA isolated from polysomes (with some overlap; i.e. mRNA coding for brain-specific S100 protein is present in both RNP particles and polysomes).
Addition of total brain RNP particles to a cell-free wheat embryo system inhibits the endogenous incorporation of [35S]methionine. Total RNP particles were fractionated by sucrose density gradient centrifugation into a'light'and a'heavy'fraction. The light RNP fraction inhibited while the heavy RNP fraction stimulated protein synthesis in the wheat embryo cell-free system. Analysis of the protein composition of fractionated RNP particles revealed that the light and heavy RNP particles contained different sets of proteins. Together these results suggested that one class of brain RNP particles may contain a translational inhibitor and may be involved in the regulation of protein synthesis in the brain.  相似文献   

18.
《Research in virology》1991,142(2-3):205-212
Macrophages were obtained after differentiation of healthy donor monocytes. Seven to 9 days after isolation, cells were infected with HIV1. Tumour necrosis factor α (TNFα) biological activity, TNFα- and 1-6-fructose-diphosphatase-gene expression and gelatinase activity were sequentially determined and correlated with viral infection and replication. TNFα was only detectable when mature viral particles were isolated in cell culture supernatants; 1-6-fructose diphosphatase mRNA was hyperexpressed in infected cells and its proteolytic activity was tremendously decreased during the early days postinfection. These results would seem to indicate that in human macrophage activation, cytokine secretion and microbicidal proteolytic activity are strongly modified by HIV infection.  相似文献   

19.
20.
Fish oil supplementation in humans is often associated with an expanded low density lipoprotein (LDL) pool that is not thought to reflect increased production. Since data on clearance of LDL after fish oil supplementation (FO-LDL) are equivocal, normal volunteers (four men and three women) received ten capsules containing 3.6 g eicosapentaenoic acid and 2.9 g docosahexaenoic acid (approximately 2.5% total calories as methyl esters) for 2 weeks. Total plasma cholesterol was unchanged, but triglycerides decreased 30%. Low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were unchanged. Analysis of the LDL particles revealed that increased esterified cholesterol caused the FO-LDL core/surface ratio to be greater than baseline LDL (BL-LDL), resulting in a shift in mean LDL density from 1.060 to 1.056. N-3 fatty acids in FO-LDL were also increased greater than 40% at the expense of n-6 and n-9 fatty acids. Human hepatoma HepG2 cells were used to study the effects of FO-LDL on LDL receptor activity and mRNA abundance for the LDL receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and various apolipoproteins associated with cholesterol metabolism. In this system FO-LDL reduced LDL receptor activity compared to BL-LDL. Scatchard analysis revealed that LDL receptor number (Bmax) was reduced to one-third normal (P less than 0.001) whereas particle binding affinity was unchanged. The mRNA abundance for the LDL receptor and apoA-I were also depressed, even by low concentrations (10 micrograms/ml and 20 micrograms/ml LDL protein) of FO-LDL as compared to BL-LDL. HepG2 cells incubated with FO-LDL had decreased cellular free cholesterol but increased cholesteryl esters. Thus, moderate supplementation with fish oil n-3 fatty acids in normal humans enriches their LDL particles in cholesteryl esters and n-3 fatty acids. These particles depress both LDL receptor activity and LDL receptor mRNA abundance in HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号