首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10–15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.  相似文献   

2.
Multiscale computational modeling of drug delivery systems (DDS) is poised to provide predictive capabilities for the rational design of targeted drug delivery systems, including multi-functional nanoparticles. Realistic, mechanistic models can provide a framework for understanding the fundamental physico-chemical interactions between drug, delivery system, and patient. Multiscale computational modeling, however, is in its infancy even for conventional drug delivery. The wide range of emerging nanotechnology systems for targeted delivery further increases the need for reliable in silico predictions. This review will present existing computational approaches at different scales in the design of traditional oral drug delivery systems. Subsequently, a multiscale framework for integrating continuum, stochastic, and computational chemistry models will be proposed and a case study will be presented for conventional DDS. The extension of this framework to emerging nanotechnology delivery systems will be discussed along with future directions. While oral delivery is the focus of the review, the outlined computational approaches can be applied to other drug delivery systems as well.  相似文献   

3.
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.  相似文献   

4.
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.  相似文献   

5.
The era of nanotechnology has allowed new research strategies to flourish in the field of drug delivery. Nanoparticle-based drug delivery systems are suitable for targeting chronic intracellular infections such as tuberculosis. Polymeric nanoparticles employing poly lactide-co-glycolide have shown promise as far as intermittent chemotherapy in experimental tuberculosis is concerned. It has distinct advantages over the more traditional drug carriers, i.e. liposomes and microparticles. Although the experience with natural carriers, e.g. solid lipid nanoparticles and alginate nanoparticles is in its infancy, future research may rely heavily on these carrier systems. Given the options for oral as well as parenteral therapy, the very nature of the disease and its complex treatment urges one to emphasize on the oral route for controlled drug delivery. Pending the discovery of more potent antitubercular drugs, nanotechnology-based intermittent chemotherapy provides a novel and sound platform for an onslaught against tuberculosis.  相似文献   

6.
During the long period of cyclosporine-containing dosage forms development a lot of significant findings have been done especially in the field of drug delivery systems. Currently available drugs are based, from technological point of view, on self-dispersible drug delivery systems, which contain cyclosporine solved in pharmaceutically acceptable vehicle. One can find difference among particular systems a) at particle size distribution after dispergation, b) at composition and c) at bioavailability of cyclosporine. As far as improvement of bioavailability between original brand leader formulation Sandimmune and recent brand leader formulation Neoral was followed by significant improvement in particle size distribution it was generally assumed that the reason for this improvement have been found. Several other formulations e.g. Consupren or SangCyA--self-dispersible systems, more or less correspond with above mentioned theory that smaller is better and by this principle bridged liquid based dosage forms with solid dosage forms. Bioavailability of novel drug delivery system which gives coarse dispersion with average particle size between 1-150 microns when dispersed have been tested on healthy volunteers. No difference among pharmacokinetic parameters of novel drug delivery system and microemulsion system have been observed in spite of fact that average particle size of novel system is almost 1000x bigger.  相似文献   

7.
Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of −20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0–24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.  相似文献   

8.
Lactoferrin (Lf), as a therapeutic protein drug, has attracted much interest due to its many important roles in human and animal health and development. Oral delivery offers the most convenient way for supplementing Lf. However, the bioavailability of orally administered Lf is limited by a number of barriers associated with protein absorption. During the past decade, several oral delivery systems have been developed to preserve Lf stability in order to enhance gastric residence time and improve its bioavailability. This review summarizes various pharmaceutical strategies currently under investigation including: PEGylation, absorption enhancers, enzymatic inhibitors and advanced drug carrier systems.  相似文献   

9.
Tuberculosis is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. It is endemic in most developing countries and resurgent in developed and developing countries with high rates of human immunodeficiency virus infection. This article reviews the current situation in terms of drug delivery approaches for tuberculosis chemotherapy. A number of novel implant-, microparticulate-, and various other carrier-based drug delivery systems incorporating the principal anti-tuberculosis agents have been fabricated that either target the site of tuberculosis infection or reduce the dosing frequency with the aim of improving patient outcomes. These developments in drug delivery represent attractive options with significant merit, however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin bioavailability in fixed-dose combinations. This is fostered by the need to deliver medications to patients more efficiently and with fewer side effects, especially in developing countries. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-tuberculosis drugs, which attains segregated delivery of rifampicin and isoniazid for improved rifampicin bioavailability, could be a step in the right direction in addressing issues of treatment failure due to patient non-compliance.  相似文献   

10.
Ngwuluka N 《AAPS PharmSciTech》2010,11(4):1603-1611
Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.  相似文献   

11.
Several therapeutic molecules such as lipophilic drugs and peptides suffer from the problems of low oral bioavailability. Improvement of their bioavailability and simultaneous prevention of the oral degradation of the prone molecules appears to be a challenge. Lymphatic system, which is responsible for the maintenance of fluid balance, immunity and metastatic spread of cancers, is also found to play a major role in the oral absorption of lipids and lipophilic drugs from intestine. The specialized structure of gut associated lymphoid tissue can be utilized as a gateway for the delivery of particulate systems containing drugs. Even though a large gap has existed in the field of lymphatic drug delivery, the introduction of a large number of lipophilic drugs and peptides has brought a renewed interest of research in this area. In this review, the mechanisms of intestinal lymphatic drug transport, approaches taken for the delivery of macromolecules, lipophilic and peptide drugs, biochemical barriers involved in intestinal drug absorption, and animal models used in the studies of intestinal lymphatic drug transport has been discussed.  相似文献   

12.
蛋白质药物口服给药系统因其给药方便、顺应性好,逐渐成为一种最有前景的给药方式.从提高蛋白质药物生物利用度入手,综述采用结构修饰、吸收促进剂、酶抑制剂、结肠定位释药、脉冲式药物给药系统和受体介导靶向载体系统等方式,均可大大提高蛋白质药物的口服生物利用度和在胃肠道中的稳定性.  相似文献   

13.
Transdermal drug delivery offers an attractive alternative to injections and oral medications. However, applications of transdermal drug delivery are limited to only a few drugs as a result of low skin permeability. Application of low-frequency ultrasound enhances skin permeability, a phenomenon referred to as low-frequency sonophoresis. In this method, a short application of ultrasound is used to permeabilize skin for a prolonged period of time. During this period, ultrasonically permeabilized skin may be utilized for drug delivery. In addition, a sample of interstitial fluid or its components may be extracted through permeabilized skin for diagnostic applications. In this paper, we report our in vivo studies that demonstrate the principles of both of these concepts. Detailed studies on drug delivery are performed using inulin and mannitol as model drugs. Studies on diagnostics are performed using glucose as a model analyte. Applications of this technology to drug delivery and diagnostics are discussed.  相似文献   

14.
Calcineurin inhibitors such as cyclosporine A and FK506 have been used for transplant therapy and treatment of autoimmune diseases. However, the inhibition of calcineurin outside the immune system has a number of side effects, including hyperglycemia. In the search for safer drugs, we developed a cell-permeable inhibitor of NFAT (nuclear factor of activated T cells) using the polyarginine peptide delivery system. This peptide provided immunosuppression for fully mismatched islet allografts in mice. In addition, it did not affect insulin secretion, whereas FK506 caused a dose-dependent decrease in insulin secretion. Cell-permeable peptides can thus provide a new strategy for drug development and may eventually be useful clinically.  相似文献   

15.
A novel oral drug delivery system for the controlled release of liquid drugs, drug solutions, and semisolid drug preparations is presented that is utilizing the constant vapor pressure of liquefied gas. The system is equipped with a capillary as an element determining the drug delivery rate and contains a liquefied propellant with a suitable boiling point below human body temperature. In the dissolution studies, polyacrylate gels of different viscosities containing paracetamol as model drug were used. Zero-order release kinetics was obtained. The release rates were dependent on the gel viscosity. Besides, by gel viscosity, the drug release rates could also be modified by changing the propellant type and the capillary parameters such as length or diameter. Accordingly, the new system enables a wide range of drug delivery kinetics which can be modified in a case-by-case basis in order to match the desired drug delivery characteristics.  相似文献   

16.
Cyclosporine is an immunosuppressive drug that is widely used to prevent organ transplant rejection. Known intracellular ligands for cyclosporine include the cyclophilins, a large family of phylogenetically conserved proteins that potentially regulate protein folding in cells. Immunosuppression by cyclosporine is thought to result from the formation of a drug-cyclophilin complex that binds to and inhibits calcineurin, a serine/threonine phosphatase that is activated by TCR engagement. Amino acids within the cyclophilins that are critical for binding to cyclosporine have been identified. Most of these residues are highly conserved within the 15 mammalian cyclophilins, suggesting that many are potential targets for the drug. We examined the effects of cyclosporine on immune cells and mice lacking Ppia, the gene encoding the prototypical cyclophilin protein cyclophilin A. TCR-induced proliferation and signal transduction by Ppia(-/-) CD4(+) T cells were resistant to cyclosporine, an effect that was attributable to diminished calcineurin inhibition. Immunosuppressive doses of cyclosporine failed to block the responses of Ppia(-/-) mice to allogeneic challenge. Rag2(-/-) mice reconstituted with Ppia(-/-) splenocytes were also cyclosporine resistant, indicating that this property is intrinsic to Ppia(-/-) immune cells. Thus, among multiple potential ligands, CypA is the primary mediator of immunosuppression by cyclosporine.  相似文献   

17.
The treatment of inflammatory bowel disease (IBD) recently has been revolutionized by the introduction of protein-based biologic therapies. However, biologic therapy is complicated by the requirement for administration with a needle, systemic side effects, and high cost. Particulate drug delivery systems have been shown to deliver drugs locally to the intestinal mucosa via oral administration. However, these systems have been largely unexplored for the delivery of biologics due to harsh particle fabrication conditions and the tendency of many particulate formulations to dissolve in the acidic upper GI tract. We have, therefore, fabricated an inexpensive and non-toxic novel microparticle capable of encapsulating proteins. We establish that the particle retains its contents at acidic pH and releases them at neutral pH. We also demonstrate particulate encapsulation of interleukin-10 (IL-10), a protein relevant to the treatment of IBD, at an encapsulation efficiency of 14.3 percent. Such a vehicle is promising for its oral route of administration and potential to decrease side effects and increase potency of biologics.  相似文献   

18.
In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.  相似文献   

19.
Abstract

The immunosuppressive agent cyclosporine A (CSA) has been shown to reverse multidrug resistance (MDR) in malignant cells. In the present study, a 3H-cyclosporine diazirine analogue (3H-PL-CS) was used to photolabel viable MDR cells. The 170 kDa membrane P-glycoprotein, which functions as a drug efflux pump, was strongly labeled. The binding of 3H-cyclosporine diazirine analogue to P-glycoprotein was competable by excess cyclosporine A and by the nonimmunosuppressive cyclosporine H. These results suggest that cyclosporine reverses the MDR phenotype by binding directly to P-glycoprotein and that this binding is not dependent on the immunosuppressive potential of the cyclosporine derivative. The identification of P-glycoprotein as a cyclosporine binding protein has obvious implications for cancer chemotherapy.  相似文献   

20.
目的:以牛血清白蛋白(BSA)作为模型药物,制备壳聚糖/有机累托石复合物微球,建立一种安全有效的药物控释传递系统。方法:壳聚糖(CS)/有机累托石(OREC)和海藻酸钠,按照不同的混合比例交联,在Ca2+水溶液中包裹BSA而形成壳核结构的微球。采用傅立叶红外光谱(FTIR)、动态光散射(DLS)、原子力显微镜(AFM)、X-衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)观察研究微球的形态、CS和OREC的插层结构、BSA的包封率和控释效果。结果:口光学显微镜和扫描电镜观察显示,形成了壳核结构的微球。傅里叶变换光谱和X-射线能量分散显示,OREC存在于微球中。小角X-射线衍射证实,CS链成功的插入OREC插层中。BSA的包封率和控释检测结果显示,与纯的CS/ALG形成的微球相比较,CO复合物所形成的微球药物释放率明显提高。结论:OREC-HTCC纳米粒子是良好的蛋白药物载体,具有包封率高、缓释效果好等优点,为CS-OREC作为潜在的药物给药系统的进一步应用提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号