首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zooplankton biomass (as dry weight), respiration and ammonia excretion were studied in three different size classes (200–500, 500–1000 and >1000 μm) in the Bransfield Strait during December 1991. Average mesozooplankton biomass was 86.45 ± 56.74 mg · dry weight · m−2, which is in the lower range of the values cited in the literature for polar waters. Higher biomass was observed in the Weddell water. The small size fraction accounted for about 50% of total biomass while the largest one represented 35%. Rather high metabolic rates were found, irrespective of whether the organisms were incubated in the presence of food. No significant differences were observed in mass specific respiration and ammonia excretion rates between different temperatures of incubation (0.2–2.3°C) and between the size classes studied. Because of the very low biomass values observed, the metabolic requirements of mesozooplankton during December represented a small fraction of the primary production. Accepted: 5 September 1998  相似文献   

2.
Biomass (as dry weight and protein content), gut fluorescence, electron transfer system (ETS) and aspartate transcarbamylase (ATC) activities were studied in different size fractions (200–500, 500–1000 μm and 1–14 mm) in the Bransfield Strait (Antarctic Peninsula) during January 1993. Very low values of zooplankton biomass were observed in all the size classes studied. About 56% of total biomass was due to the large size fraction (1–14 mm) while the smallest one (200–500 μm) accounted for about 26%. Gut fluorescence values increased in relation to the size class considered, as expected, being the differences from the smaller to the highest size fractions of orders of magnitude. Calculated ingestion rates showed that about 60–80% of total zooplankton ingestion (<14 mm) was due to the smaller organisms. Higher average values and higher variability of specific ETS activity was observed in the smaller size fraction while no differences between size classes were observed for the specific ATC activity. Biomass, gut fluorescence, ETS and ATC activities were not significantly different between the Bellingshausen and Weddell waters, although higher standard deviation was normally found at the former area. With the restrictions of using the above indices to estimate physiological rates, potential grazing of mesozooplankton (<14 mm) accounted for a rather low portion (<10%) of the primary production. The index of growth showed high values, suggesting no food limitation of mesozooplankton. Therefore, other processes such as predation should account for the very low biomass found and for the fate of a large portion of primary production. Accepted: 26 March 2000  相似文献   

3.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

4.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

5.
The results of gut evacuation experiments performed on Antarctic copepods during the austral spring are presented and discussed. Four species of large copepods commonly occurring in the Indian sector of the Antarctic Ocean were studied: Calanus propinquus, Calanoides acutus, Rhincalanus gigas and Pleuromamma robusta. For each species two experiments were carried out, one in daytime and one in night-time, except for Calanoides acutus, which was only studied at night. P. robusta showed pigment gut retention in all experiments. The results showed that all species studied had a longer gut passage time than that previously recorded and that gut evacuation rate appears to decrease during daytime. Accepted: 1 October 1998  相似文献   

6.
Andrea Abelmann 《Polar Biology》1992,12(3-4):357-372
Summary The study of radiolarians collected during sediment trap experiments in the Drake Passage, the northern Powell Basin, and the King George Basin of the Bransfield Strait provides new information on the fluxes of radiolarian shells in Antarctic waters, on the annual flux pattern, the species distribution and its ecological significance, and on alteration processes of the radiolarian shells in the water column and at the sediment/water interface. A 28-month monitoring with time-series sediment traps in the Bransfield Strait indicates an annual flux pattern characterized by short-term flux pulses during austral summer, which reach daily fluxes of up to 5 × 103 shells m–2 and which account for more than 90% of the total annual flux. The distinct seasonal variations are linked to variations in the sea ice coverage. Other controlling factors are the production of phytoplankton and the impact by zooplankton grazers, e.g., krill. During the summer flux pulses the vertical fluxes of radiolarians range between ca. 3 and 21 × 104 shells m–2, values that are one or more orders of magnitudes lower than fluxes observed at sites in the tropical and northern high-latitude ocean. Significant lateral transport of radiolarians was documented during the austral summer in the Bransfield Strait by a factor of 10 increase of the radiolarian flux in the lower portion of the water column and the species composition trapped in deeper waters. Radiolarian assemblages associated with pelagic and neritic environments characterized by typical Antarctic taxa (Antarctissa spp.) and a group of species with bipolar distribution (e.g. Plectacantha oikiskos, Phormacantha hystrix), respectively, are distinguished. While the signal of polycystine radiolarians is relatively well recorded in the sediments, the shells of phaeodarians, which were observed at fluxes of up to 1 × 103 shells m–2day–1 in the upper portion of the water column, are almost completely dissolved during settling through the water column.  相似文献   

7.
The Bransfield Strait is a semi-enclosed sea located in the northern part of the West Antarctic Peninsula region, which is subject to strong climatic changes. The bathymetry is complex and comprises three basins that are separated from each other by shallow sills. Oceanographic measurements of the Bransfield Strait region are available since the first half of the twentieth century. In this study, hydrographic data from the ANT-XXIX/3 expedition of RV Polarstern in 2013 are presented to describe the actual physical state of the art, particularly for biological work done during that cruise. The general hydrographic situation of the Bransfield Strait in 2013 is found to be similar to observations from the early twentieth century. The Bransfield Strait’s water masses are modified versions of the water masses from the adjacent seas. The different water masses within the Bransfield Strait are separated by two fronts, the so-called Bransfield and Peninsula Front. While the Bransfield Front is most pronounced in the central and southwestern Bransfield Strait, the Peninsula Front can be identified from the northeastern to the central part of the study domain. Based on an analysis of water mass properties around the Antarctic Peninsula and close to the Antarctic Sound, a notable inflow of Shelf Water from the Weddell Sea through the Antarctic Sound appears unlikely.  相似文献   

8.
Recent global warming reduces surface water salinity around the Antarctic Peninsula as a result of the glacial meltwater runoff, which increases the occurrence and abundance of certain phytoplankton groups, such as cryptophytes. The dominance of this particular group over diatoms affects grazers, such as Antarctic krill, which preferentially feed on diatoms. Using three late summer data sets from the Bransfield Strait (2008–2010), we observed variations in the dominant phytoplankton groups determined by HPLC/CHEMTAX pigment analysis and confirmed by microscopy. Results indicate that the dominance of diatoms, particularly in 2008 and 2009, was associated with a deeper upper mixed layer (UML), higher salinity and warmer sea surface temperature. In contrast, cryptophytes, which were dominant in 2010, were associated with a shallower UML, lower salinity and colder sea surface temperatures. The low diatom biomass observed in the summer of 2010 was associated with high nutrient concentration, particularly silicate, and low chlorophyll a (summer monthly average calculated from satellite images). The interannual variability here observed suggests a delayed seasonal succession cycle of phytoplankton in the summer of 2010 associated with a cold summer and a late ice retreat process in the region. This successional delay resulted in a notable decrease of primary producers’ biomass, which is likely to have impacted regional food web interactions. This study demonstrates the susceptibility of the Antarctic phytoplankton community structure to air temperature, which directly influences the timing of ice melting and consequently the magnitude of primary production and succession pattern of phytoplankton groups.  相似文献   

9.
Size-fractionated primary production was measured by carbon-14 uptake incubations on three transects between 47°S and 59°30S along 6°W in October/November 1992. Open Antarctic Circumpolar Current and ice-covered Weddell Gyre water showed comparable low productivity (0.3 gCm–2 day–1) and size distribution. Picoplankton (<2 m) was the dominant size fraction, contributing approximately half to the total water column production. The significance of larger (>20 m) phytoplankton was only minor. Productivity in the Polar Front Zone north of 50°S, with higher water column stability, was up to 10 times higher with microplankton (>20 m) being predominant. No ice-edge bloom occurred over the 2 months study period; this is explained by non-favourable hydrographic conditions for blooming and the lack of melt-water lenses upon ice retreat. Picoplankton tended to make higher contributions at lower water column stability, and microplankton to make higher contributions at higher stability. Mixing, together with light climate, are discussed as the driving forces for Antarctic primary production and for its size structure.  相似文献   

10.
The present paper describes latitudinal and vertical changes in the composition, abundance and diversity of copepods in the Indian sector of the Antarctic Ocean, during the end of austral summer along a transect on 66°30′E between 43 and 62°S, within three layers (600–0, 200–0, 100–0 m). Highest copepod densities were noted in the central part of the transect, between the Antarctic Divergence and the Antarctic Convergence, with a maximum in the Antarctic Divergence zone, particularly in the upper levels of the water column. A total number of 80 copepod species were identified over the entire survey area. The south end and the central part of the transect comprised a small number of species. North of the Antarctic Convergence, this number increased markedly with the progressive disappearence of those species characteristic of Antarctic waters and their replacement by temperate and subtropical species. Generally, small copepods, particularly Oithona similis, Oithona frigida and Ctenocalanus citer, dominated in numbers in both Antarctic and sub-Antarctic areas. The contribution of large species to total copepod numbers was much lower, with Calanus simillimus in the central part of the transect, Pleuromamma borealis in the subtropical zone and Calanus propinquus in the southern part. Correspondence analysis showed a marked latitudinal gradient in population structure with four groups of samples and species corresponding to four latitudinal zones. Community structure (species richness, relative dominance index, evenness, Shannon species diversity index) and species abundance patterns (as rank-frequency diagrams) suggested that the maturity and species richness increased gradually from south to north. A low diversity index and evenness were observed in the area of the Antarctic Divergence, whereas the convergence zone showed high diversity and evenness. Conversely, the frontal zone showed high diversity and evenness. Distribution appeared unrelated to chlorophyll concentrations and on the large scale was related to the hydrologic characteristics. Received: 8 May 1996 / Accepted: 27 August 1996  相似文献   

11.
Temperature and Antarctic plankton community respiration   总被引:1,自引:0,他引:1  
Antarctic plankton community respiration rates were determinedfrom in vitro changes in dissolved oxygen. Oxygen consumptionrates, measured at in situ temperatures between 0 and 6°C,were found to lie in the range 0.3–3.7 µmol O2 l–1per 24 h. Water samples were collected between East FalklandIsland and South Georgia, South Atlantic Ocean, and incubatedshipboard in the dark at up to 36 temperatures between –2and 14–C. A respiration rate at each temperature was thendetermined and used to calculate the temperature coefficient(Q10) of Antarctic planktonic community respiration from theArrhenius equation. Fourteen Q0 values lay in the range 1–3,with four further values >5. This range of temperature coefficientvalues for community respiration is comparable to the publishedrange of values for plankton photosynthesis. Frequency distributionsof temperature coefficients for the two processes show similarmodal Q105 of 2–3. Thus, this study does not lend supportto the hypothesis of a differential response of photosynthesisand community respiration to low temperature.  相似文献   

12.
 The relationships between hydrography and spatial distribution of several biochemical indicators of microplankton biomass (chlorophyll, protein and ATP) were studied in an area covering the eastern part of the Bransfield Strait and the northern part of the Weddell Sea, during Antarctic summer (January 1994). Four hydrographic zones were identified: (a) the northern part of the Bransfield Strait, covered by waters of Bellings- hausen Sea origin; (b) a Weddell Sea water mass that affected most of the study area; (c) the Weddell-Scotia Confluence waters, observed north of Elephant Island; and (d) waters influenced by ice melting, found towards the southeastern part of the sampled area. The highest values of biomass indicators (chlorophyll a, ATP and protein) were found in the zones affected by ice-melting processes and in waters from the Bellingshausen Sea. The lowest values of all biochemical parameters were found in the Weddell Sea and in the Weddell-Scotia Confluence waters. A high variability in the hydrographic structure and the distribution of biochemical indicators was observed. The degree of stabilization of the water column, the depth of the upper mixed layer and the grazing pressure of herbivorous zooplankton played a major role in the development, accumulation and spatial variability of microplankton biomass. Received: 15 August 1995/Accepted: 18 February 1996  相似文献   

13.
Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.  相似文献   

14.
The results are presented of a macroscale physical and biological oceanographic survey conducted during the second Marion Island Offshore Study in the upstream and downstream regions of the Prince Edward Islands in the austral autumn (April/May) 1997. Upstream of the islands, the Sub-Antarctic Front appeared to combine with the Antarctic Polar Front to form an intensive frontal feature. Closer to the islands, the fronts appeared to separate. Influenced by the shallow topography of the southwest Indian ridge, the Sub-Antarctic Front was steered northwards around the islands while the Antarctic polar front appeared to meander eastwards, where it was again encountered in the southeastern corner of the survey grid. Downstream of the islands, an intensive cold-core eddy within the Polar Frontal Zone was observed. Its exact genesis is unknown but it is possibly generated by instabilities within the meandering Antarctic polar front as its surface signature was characteristic of Antarctic surface water masses found south of the Antarctic polar front. The cold-core eddy appeared to displace the sub-Antarctic front northwards. South of the eddy, a warm patch of sub-Antarctic surface water was observed; its position appeared to be controlled by the meandering Antarctic Polar Front which lay on either side of this feature. No distinct microphytoplankton groupings could be distinguished by numerical analyses, although four distinct zooplankton groupings were identified. These corresponded to the sub-Antarctic surface waters, Antarctic surface waters and the polar frontal zone waters. The fourth grouping comprised those stations where the lowest zooplankton abundances during the entire investigation were recorded and, as a consequence, does not reflect any spatial patterns. These results suggest that the species composition and distribution of plankton in the vicinity of the islands were consistent with the prevailing oceanographic regime. Accepted: 15 March 1999  相似文献   

15.
This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.  相似文献   

16.
S. Gollasch 《Polar Biology》1997,18(3):223-226
Ostracod samples were taken from coastal waters of the South Shetland Islands (King George and Elephant) northeast of the Antarctic Peninsula. The population structure of the planktonic ostracods in the upper 200-m water column is described. In total 77 samples were taken quantitatively by RMT-1 hauls predominantly containing Alacia hettacra, A. belgicae and Metaconchoecia isocheira. The dominance of A2, A1 and adult stages supports Kock's conclusion of an upward-directed ontogenetic migration. Received: 19 December 1996 / Accepted: 24 March 1997  相似文献   

17.
南极磷虾是一种典型的集群性海洋生物,其集群特征为行为生态学研究领域的重要内容之一。南极磷虾在南设得兰群岛周围高度密集分布,然而磷虾集群形状和大小的机制解释仍存在较大的争议。基于南设得兰群岛周边水域收集的Simrad EK80声学数据,本研究利用Echoview V6.16软件,对声学数据进行了分析,并对磷虾集群特征进行了划分。通过主坐标分析(PCoA)检验了环境因素(表温和海况)以及时空因素对各类型磷虾集群产生的影响。结果表明:海况对磷虾集群影响较大,光照强度次之;块状小型集群的时空分布较广,夜间与白天均占有较高比例(>30%);小型集群更易出现在白天,而大型集群则更多出现在深夜; 2月,磷虾集群与海况及纬度显著相关; 3月,集群与时段显著相关; 4月,集群与时段及海况显著相关。  相似文献   

18.
Allometric interpretations of community size structure often assume that laboratory relations between physiological rates and body size apply in the field, but this assumption is rarely examined critically. We therefore tested the hypothesis that limnoplankton community respiration rates are predictable functions of mean body size, and compared these functions to laboratory relations. Over a broad range of trophic conditions (6.5 [TP] 130 g I–1; 1.2 [chl-a] 29 g 1–1 ), the mean respiration rate per organism for picoplankton, nannoplankton, and net plankton assemblages was a power function of mean organism size, with an exponent of 0.73. When respiration (R) and biovolume (B) are standardized to equivalent carbon units, the R/B ratio was a power function of mean organism size, with an exponent of –0.30. These results provide empirical support for the contention that size distributions may be used to construct comprehensive models of community physiology. The total epilimnetic phosphorus concentration was correlated with both the biovolume and respiration rate of the plankton community, as well as with the respiration rates of the three plankton size classes; so these aspects of community function may also be predictable functions of lake trophic state.  相似文献   

19.
During the austral summer 1995, suprabenthic samplings were carried out at 24 stations (depth range 45–649 m) located around Livingston Island, within the caldera of Deception Island and in the Bransfield Strait. At each station, the near-bottom motile fauna was simultaneously collected with a multinet Macer-GIROQ sled in three water layers above the bottom. This study presents original data on the occurrence, diversity, vertical distribution and abundance of suprabenthic taxa in this near-bottom environment. The most speciose taxa were amphipods (at least 140 spp.), followed by isopods (66 spp.), pycnogonids (31 spp.) and mysids (19 spp.). Total abundances ranged between 31 ind./100 m2 (Bransfield Strait, 361 m depth) and 6817 ind./100 m2 (South Livingston Island, 163 m depth). According to stations, the groups numerically dominant and more frequent were amphipods (17 stations) or mysids (seven stations). Four suprabenthic assemblages were discriminated in the study area, apparently more structured by the degree of shelter-exposure and development of sessile epifauna than by water depth or sediment features.  相似文献   

20.
Distribution of particulate amino acids in the Bransfield Strait   总被引:2,自引:1,他引:1  
Summary The depth distribution and composition of residual amino acids was determined in December 1980 in the Bransfield Strait. The major components were aspartic and glutamic acids together with alanine, glycine and serine. Non-protein amino acids were not found in significant amounts. On the average, the amino acids accounted for 25% of the total organic carbon and 50% of the organic nitrogen. Amino acid nitrogen/chlorophyll ratios indicated that in most euphotic zone samples phytoplankton in good physiological condition was present whereas heavily degraded material was found in deeper water layers. Statistical treatment and cluster analysis show distinct differences between euphotic and aphotic zone samples which could be used to characterize phytoplankton communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号