首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3.3-kilobase PvuII fragment carrying the PHR1 gene of Saccharomyces cerevisiae has been cloned into an Escherichia coli expression vector and introduced into E. coli strains deficient in DNA photolyase. Complementation of the E. coli phr-1 mutation was observed, strongly suggesting that the yeast PHR1 gene encodes a DNA photolyase.  相似文献   

2.
The PUT2 gene was isolated on a 6.5-kilobase insert of a recombinant DNA plasmid by functional complementation of a put2 (delta 1-pyrroline-5-carboxylate dehydrogenase-deficient) mutation in Saccharomyces cerevisiae. Its identity was confirmed by a gene disruption technique in which the chromosomal PUT2+ gene was replaced by plasmid DNA carrying the put2 gene into which the S. cerevisiae HIS3+ gene had been inserted. The cloned PUT2 gene was used to probe specific mRNA levels: full induction of the PUT2 gene resulted in a 15-fold increase over the uninduced level. The PUT2-specific mRNA was approximately 2 kilobases in length and was used in S1 nuclease protection experiments to locate the gene to a 3-kilobase HindIII fragment. When delta 1-pyrroline-5-carboxylate dehydrogenase activity levels were measured in strains carrying the original plasmid, as well as in subclones, similar induction ratios were found as compared with enzyme levels in haploid yeast strains. Effects due to increased copy number or position were also seen. The cloned gene on a 2 mu-containing vector was used to map the PUT2 gene to chromosome VIII.  相似文献   

3.
We have screened a yeast genomic library for complementation of the UV sensitivity of mutants defective in the RAD1 gene and isolated a plasmid designated pNF1000 with an 8.9-kilobase insert. This multicopy plasmid quantitatively complemented the UV sensitivity of two rad1 mutants tested but did not affect the UV resistance of other rad mutants. The location of the UV resistance function in pNF1000 was determined by deletion analysis, and an internal fragment of the putative RAD1 gene was integrated into the genome of a RAD1 strain. Genetic analysis of several integrants showed that integration occurred at the chromosomal RAD1 site, demonstrating that the internal fragment was derived from the RAD1 gene. A 3.88-kilobase region of pNF1000 was sequenced and showed the presence of a small open reading frame 243 nucleotides long that is apparently unrelated to RAD1, as well as a 2,916-nucleotide larger open reading frame presumed to encode RAD1 protein. Depending on which of two possible ATG codons initiates translation, the size of the RAD1 protein is calculated at 110 or 97 kilodaltons.  相似文献   

4.
The structural gene for DNA topoisomerase II from the yeast Saccharomyces cerevisiae has been cloned. The clones were selected from a YEp13 plasmid bank of yeast DNA by complementing a temperature-sensitive mutation (top2-1) in the topoisomerase II gene, TOP2. Chromosomal integrants of the clone were derived by homologous recombination in strains lacking the 2 mu circle plasmid. Genetic analysis of these integrants indicates that we have cloned the TOP2 gene and not an extragenic suppressor. A YEp13-TOP2 hybrid plasmid integrant was used to localize the TOP2 gene to the left arm of chromosome XIV by the 2 mu circle-directed marker loss method. Results from standard meiotic mapping experiments indicate that TOP2 is about 16 centi-Morgans to the centromere proximal side of MET4. Northern blot analysis of TOP2 RNA isolated from a wild-type strain and from an rna2 mutant shows the RNA to be 4.5 kb long in both cases, thus indicating that the TOP2 gene has no large introns.  相似文献   

5.
A group of Saccharomyces cerevisiae mutants deficient in repair of induced premutation lesions (him mutants) were previously isolated in our laboratory. Recessive him1 mutant had enhanced level of spontaneous and induced mutagenesis as well as specific altered mitotic conversion. This HIM1 gene was supposed to be involved in the process of mismatch correction of heteroduplexes. In this paper the correction efficiency of in vitro constructed heteroduplex DNA in wild-type cells and him1 mutant was studied. In the former cells heteroduplex DNA was repaired highly efficiently (about 90%), this repair efficiency being reduced in him cells approx. two times as compared with the wild-type cells. Molecular cloning of yeast chromosomal DNA fragments containing HIM1 gene was carried out. The clones were selected from the bank of yeast DNA fragments by complementing him1-1 mutation which enhances conversion frequency in ADE2 gene. One of the DNA fragments was analysed by restriction endonuclease digestion and shown to contain an insert of 6 Kb. Chromosomal integrants were obtained by homologous recombination between the plasmid and chromosomal gene him1.  相似文献   

6.
The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway.  相似文献   

7.
Identification of the sporulation gene spoOA product of Bacillus subtilis   总被引:2,自引:0,他引:2  
A 2.4-kilobase fragment of the Bacillus subtilis chromosome containing the wild-type spoOA gene derived from the phi 105dspoOA+-Bc-1 transducing phage was cloned onto plasmid pBR322 in Escherichia coli. A recombinant plasmid harboring the mutant spoOA12 allele on the 2.4-kilobase insert was also constructed from the phi 105dspoOA12-1 phage DNA and pBR322. Protein products synthesized in response to plasmid DNA in a DNA-directed cell-free system derived from E. coli were analyzed by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. A protein of approximately 27,500 daltons synthesized with the recombinant plasmid DNA harboring the wild-type spoOA gene as template was not formed with the recombinant plasmid DNA harboring the spoOA12 allele. Since the spoOA12 mutation is a nonsense mutation, we conclude that the 27.5-kilodalton protein is the product of the spoOA gene.  相似文献   

8.
9.
Damage to DNA induced by ultraviolet light can be reversed by a blue light-dependent reaction catalyzed by enzymes called DNA photolyases. Chlamydomonas has been shown to have DNA photolyase activity in both the nucleus and the chloroplast. Here we report the cloning and sequencing of a gene, PHR2, from Chlamydomonas encoding a class II DNA photolyase. The PHR2 protein, when expressed in Escherichia coli, is able to complement a DNA photolyase deficiency. The previously described Chlamydomonas mutant, phr1, which is deficient in nuclear but not chloroplast photolyase activity was shown by RFLP analysis not to be linked to the PHR2 gene. Unlike the recently reported class II DNA photolyase from Arabidopsis, the protein encoded by PHR2 is predicted to contain a chloroplast targeting sequence. This result, together with the RFLP data, suggests that PHR2 encodes the chloroplast targeted DNA photolyase.  相似文献   

10.
An immunological screening technique has been used for the detection of a specific antigen-producing clone in a bank of bacterial colonies containing hybrid plasmids. This technique involves covalent attachment of antiserum to cyanogen bromide-activated paper discs, contact of this paper with lysed colonies on agar plates, and finally detection of the bound antigen with 125I-labeled antibody. Using this method, we have identified an Escherichia coli colony, containing a yeast DNA insert in plasmid ColE1, that produces antigen which combines with antibody directed against purified yeast 3-phosphoglycerate kinase. The hybrid plasmid (pYe57E2) obtained by this procedure has been shown by both biochemical and genetic methods to contain the structural gene PGK for yeast 3-phosphoglycerate kinase. The location of the PGK structural gene on pYe56E2 was determined by immunological screening of E. coli colonies bearing plasmids containing various reconstructions of the original yeast DNA insert. Examination of the expression of the cloned yeast PGK gene in both E. coli and yeast has shown that functional enzyme is synthesized from the cloned gene in yeast, but not in E. coli.  相似文献   

11.
The respiratory deficiency of yeast strains previously assigned to complementation group G7 has been ascribed to the absence in the mutants of functional cytochrome b. Since G7 mutants are capable of synthesizing the apoprotein, the primary effect of the mutations is to prevent maturation of this electron carrier. The recombinant plasmid pG7/T1 with a 6.7-kilobase pairs (kb) insert of wild type yeast nuclear DNA has been selected from a genomic library by transformation of a G7 mutant to respiratory competency. The genetically active region of the pG7/T1 insert has been subcloned on a 3-kb fragment of DNA which has been shown to contain an open reading frame encoding a protein of 50,236 Mr. In situ disruption of the reading frame causes a deficiency in cytochrome b. The strain with the disrupted gene fails to complement G7 mutants thereby confirming the correct identification of the gene henceforth referred to as COR1. The carboxyl-terminal half of the COR1 gene has been fused to the amino-terminal half of the Escherichia coli trpE gene in the high expression vector pATH2. This plasmid construct promotes a high level of expression of the trpE/COR1 hybrid protein. Antibodies against the purified hybrid protein react with a 44 kDa protein subunit of yeast coenzyme QH2-cytochrome c reductase corresponding to the largest core subunit of the complex. These data indicate that the yeast nuclear gene COR1 codes for the 44-kDa core protein and that the latter is required for the conversion of apocytochrome b to mature cytochrome b.  相似文献   

12.
13.
A Yasui  S A Langeveld 《Gene》1985,36(3):349-355
A cloned fragment of Saccharomyces cerevisiae chromosomal DNA carrying the photoreactivation gene (PHR) has been sequenced. The fragment contains a 1695-bp intronless open reading frame (ORF) coding for a polypeptide of 564 amino acids (aa). The phr gene of Escherichia coli was also sequenced, and the sequence is in agreement with the published data. The yeast PHR gene has a G + C content of 36.2%, whereas 53.7% was found for the E. coli gene. Despite the difference in G + C content there is a 35% homology between the deduced aa sequences. This homology suggests that both genes have originated from a common ancestral gene.  相似文献   

14.
15.
The CDC8 gene, whose product is required for DNA replication in Saccharomyces cerevisiae, has been isolated on recombinant plasmids. The yeast vector YCp50 bearing the yeast ARS1, CEN4, and URA3 sequences, to provide for replication, stability, and selection, respectively, was used to prepare a recombinant plasmid pool containing the entire yeast genome. Plasmids capable of complementing the temperature-sensitive cdc8-1 mutation were isolated by transformation of a cdc8-1 mutant and selection for clones able to grow at the nonpermissive temperature. The entire complementing activity is carried on a 0.75-kilobase fragment, as revealed by deletion mapping. This fragment lies 1 kilobase downstream from the well-characterized sup4 gene, a gene known to be genetically linked to CDC8, thus confirming that the cloned gene corresponds to the chromosomal CDC8 gene. Two additional recombinant plasmids that complement the cdc8-1 mutation but that do not contain the 0.75-kilobase fragment or any flanking DNA were also identified in this study. These plasmids may contain genes that compensate for the lack of CDC8 gene product.  相似文献   

16.
The photolyases, DNA repair enzymes that use visible and long-wavelength UV light to repair cyclobutane pyrimidine dimers (CPDs) created by short-wavelength UV, belong to the larger photolyase-cryptochrome gene family. Cryptochromes (UVA-blue light photoreceptors) lack repair activity, and sensory and regulatory roles have been defined for them in plants and animals. Evolutionary considerations indicate that cryptochromes diverged from CPD photolyases before the emergence of eukaryotes. In prokaryotes and lower eukaryotes, some photolyases might have photosensory functions. phr1 codes for a class I CPD photolyase in Trichoderma atroviride. phr1 is rapidly induced by blue and UVA light, and its photoinduction requires functional blue light regulator (BLR) proteins, which are White Collar homologs in Trichoderma. Here we show that deletion of phr1 abolished photoreactivation of UVC (200 to 280 nm)-inhibited spores and thus that PHR1 is the main component of the photorepair system. The 2-kb 5' upstream region of phr1, with putative light-regulated elements, confers blue light regulation on a reporter gene. To assess phr1 photosensory function, fluence response curves of this light-regulated promoter were tested in null mutant (Deltaphr1) strains. Photoinduction of the phr1 promoter in Deltaphr1 strains was >5-fold more sensitive to light than that in the wild type, whereas in PHR1-overexpressing lines the sensitivity to light increased about 2-fold. Our data suggest that PHR1 may regulate its expression in a light-dependent manner, perhaps through negative modulation of the BLR proteins. This is the first evidence for a regulatory role of photolyase, a role usually attributed to cryptochromes.  相似文献   

17.
A gene, prtC, has been isolated from Porphyromonas gingivalis ATCC 53977 in Escherichia coli utilizing the plasmid vector pPL-lambda. The resultant protease positive clone NHS1, harboring plasmid pS1 with a 5.9-kilobase P. gingivalis insert, expressed an enzyme capable of hydrolyzing the synthetic collagenase substrate PZ-PLGPA as well as solubilized type I collagen. Subcloning and deletion analysis located the prtC gene at one end of the P. gingivalis DNA insert on plasmid pS1.  相似文献   

18.
U Csaikl  F Csaikl 《Gene》1986,46(2-3):207-214
  相似文献   

19.
Cell lines were generated by cotransfection of Vero cells with pSV2neo and a plasmid containing the herpes simplex virus type 1 (HSV-1) EcoRI D fragment (coordinates 0.086 to 0.194). One such cell line (S22) contained the genes for alkaline exonuclease and several uncharacterized functions. Three mutant isolates of HSV-1 strain KOS which grew on S22 cells but not on normal Vero cells were isolated and characterized. All three mutants (hr27, hr48, and hr156) were defective in the synthesis of viral DNA and late proteins when grown in nonpermissive Vero cells. Early gene expression in cells infected with these host range mutants appeared to be normal at the nonpermissive condition. The mutations were mapped by marker rescue to a 1.5-kilobase fragment (coordinates 0.145 to 0.155). The mutation of one of these mutants, hr27, was more finely mapped to an 800-base-pair region (coordinates 0.145 to 0.151). This position of these mutations is consistent with the map location of a putative 94-kilodalton polypeptide as determined by sequence analysis (D. McGeoch, personal communication). Complementation studies demonstrated that these mutants formed a new complementation group, designated 1-36. The results presented in this report indicate that the 94-kilodalton gene product affected by these mutations may have a direct role in viral DNA synthesis.  相似文献   

20.
DNA photolyases use two noncovalently bound chromophores to catalyze photoreactivation, the blue light-dependent repair of DNA that has been damaged by ultraviolet light. FAD is the catalytic chromophore for all photolyases and is essential for photoreactivation. The identity of the second chromophore is often 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). Under standard light conditions, the second chromophore is considered nonessential for photoreactivation because DNA photolyase bound to only FAD is sufficient to catalyze the repair of UV-damaged DNA. phr1 is a photoreactivation-deficient strain of Chlamydomonas. In this work, the PHR1 gene of Chlamydomonas was cloned through molecular mapping and shown to encode a protein similar to known FO synthases. Additional results revealed that the phr1 strain was deficient in an FO-like molecule and that this deficiency, as well as the phr1 photoreactivation deficiency, could be rescued by transformation with DNA constructs containing the PHR1 gene. Furthermore, expression of a PHR1 cDNA in Escherichia coli produced a protein that generated a molecule with characteristics similar to FO. Together, these results indicate that the Chlamydomonas PHR1 gene encodes an FO synthase and that optimal photoreactivation in Chlamydomonas requires FO, a molecule known to serve as a second chromophore for DNA photolyases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号