首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATPase (EC 3.6.1.3) of Escherichia coli has been solubilized from two morphologically distinct membranes (vesicles and “ghosts”). Maximum ATPase release is attained with 3 mM EDTA in NH4HCO3, pH 9.0, and depends on protein concentration. After solubilization, the total enzyme activity is increased by 300% with respect to the membrane-bound enzyme. The released soluble ATPase accounts for more than 90% of this activity. Its specific activity is at least 10 times higher than the original value. Membrane treatment with buffers of various ionic strengths without EDTA and detergents is less selective. The molecular sieving properties (gel electrophoresis and Sephadex G-200 filtration) confirm the soluble nature of the preparation. A molecular weight close to 300 000 has been estimated for it.The membrane-bound ATPase is stimulated by trypsin by 70–100%. Most of the soluble ATPase maintains a trypsin activation of the same order. Exceptions are the preparations obtained at high protein dilution and extracted with sodium dodecyl sulphate and deoxycholate. The soluble ATPase is more labile than the membrane-bound enzyme. Its sensitivity to different temperatures depends upon protein concentration and pH during storage. Inactivation seems to result from dissociation and/or proteolysis.We suggest an ATPase link to the membrane through ionic divalent cation bridges. We also suggest that the enzyme possesses self-regulatory properties which would account for trypsin stimulation.  相似文献   

2.
1. Soluble ATPase (adenosine triphosphatase) activity is released when rat liver submitochondrial particles are shaken with chloroform, provided that ATP or glycerol is present in the suspending medium. The extraction is very rapid and appears to be complete. 2. The ATPase of the chloroform extract is about 50% pure and can be readily purified to a specific activity of 60-70mumol/min per mg of protein by (NH(4))(2)SO(4) fractionation and column chromatography on Sephadex G-200. 3. The particulate and soluble ATPases have many similar properties, including their K(m) values for ATP, activation by various metal ions, hydrolytic activity with other nucleotides and stimulation by bicarbonate ions. 4. Unlike the particulate enzyme, the soluble enzyme is cold-labile and insensitive to oligomycin. 5. The molecular weight indicated by the mobility of the soluble ATPase on Sepharose 6B is 360000. 6. The soluble ATPase combines very readily with liver submitochondrial particles depleted of ATPase by salt extraction, and oligomycin-sensitivity is restored. Very little recombination of the enzyme occurs with chloroform-extracted particles. 7. The soluble enzyme contains orcinol-reactive material, suggesting that it may be a glycoprotein. The carbohydrate content was estimated to be 1-2% by weight. 8. It is concluded that the liver ATPase obtained by the chloroform extraction method of Beechey, Hubbard, Linnett, Mitchell & Munn [(1975) Biochem. J.148, 533-537] is similar to other preparations described previously and that this method is superior in simplicity and speed.  相似文献   

3.
The capacity of various ATPase preparations from beef heart mitochondria to catalyze exchange of phosphate oxygens with water has been evaluated. Oligomycin-sensitive ATPase preparations retain a capacity for considerable intermediate Pi equilibrium HOH exchange per Pi formed during ATP hydrolysis at relatively high ATP concentration (5 mM). Submitochondrial particles prepared by an ammonia-Sephadex procedure with 5 mM ATP showed more rapid ATPase, less oligomycin sensitivity, and less capacity for intermediate exchange. With these particles, intermediate Pi equilibrium HOH exchange per Pi formed was increased as ATP concentration was decreased. The purified, soluble ATPase from mitochondria catalyzed little or no intermediate Pi equilibrium HOH exchange at 5 mM ATP but showed pronounced increase in capacity for such exchange as ATP concentration was lowered. The ATPase also showed a weak catalysis of an ADP-stimulated medium Pi equilibrium HOH exchange. The results support the alternating catalytic site model for ATP synthesis or cleavage. They also demonstrate that a transmembrane protonmotive force is not necessary for oxygen exchange reactions. At lower ATP concentrations, ADP and Pi formed at a catalytic site appear to remain bound and continue to allow exchange of Pi oxygens until ATP binds at another site on the enzyme.  相似文献   

4.
The Ca2+-dependent ATPase of sarcoplasmic reticulum after solubilization with deoxycholate and removal of lipid by gel chromatography exists as a mixture of monomer, dimer, and smaller amounts of higher molecular weight aggregates. The binding capcity of deoxycholate by monomeric and oligomeric forms of the ATPase is 0.3 g/g of protein at pH 8 and ionic strength 0.11. Examination in the analytical ultracentrifuge results in estimates of protein molecular weight of monomer of 115 000 +/- 7000 and of Stokes radius of 50-55 A. The results indicate an asymmetric shape of both delipidated monomer and dimer. Solubilization of ATPase vesicles by deoxycholate at high protein dilutions leads to almost instantaneous loss of ATPase activity. However, ATPase may be solubilized by deoxycholate in presence of phospholipid and sucrose in a temporarily active state. Inactivation appears to be accompanied by delipidation and conformational changes of the protein as evidenced by circular dichroism measurements. Sedimentation velocity examination of enzymatically active preparations of soluble ATPase in presence of phospholipid and sucrose strongly suggests that the major part of enzymatic activity is derived from a monomer with an asymmetric shape. The extent of formation of soluble oligomers by column chromatography was dependent on the exact conditions used for initial solubilization of ATPase. No evidence for differences among monomer and dimer fractions was obtained by isoelectric focusing and amino acid analysis. The results of these studies are compatible with electron-microscopic studies by other authors which suggest that the ATPase has an elongated shape with limited hydrophobic contact with the membrane lipid. A resemblance of delipidated oligomers with the form in which ATPase occurs in the membrane is conjectural at present.  相似文献   

5.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

6.
To facilitate study of the role of the beta-subunit in the membrane-bound proton-translocating ATPase of Escherichia coli, we identified mutant strains from which an F1-ATPase containing abnormal beta-subunits can be purified. Seventeen strains of E. coli, characterized by genetic complementation tests as carrying mutations in the uncD gene (which codes for the beta-subunit), were studied. The majority of these strains (11) were judged to be not useful, as their membranes lacked ATPase activity, and were either proton-permeable as prepared or remained proton-impermeable after washing with buffer of low ionic strength. A further two strains were of a type not hitherto reported, in that their membranes had ATPase activity, were proton-impermeable as prepared, and were not rendered proton-permeable by washing in buffer of low ionic strength. Presumably in these two strains F1-ATPase is not released in soluble form by this procedure. F1-ATPase of normal molecular size were purified from strains AN1340 (uncD478), AN937 (uncD430), AN938 (uncD431) and AN1543 (uncD484). F1-ATPase from strain AN1340 (uncD478) had 15% of normal specific Mg-dependent ATPase activity and 22% of normal ATP-synthesis activity. The F1-ATPase preparations from strains AN937, AN938 and AN1543 had respectively 1.7%, 1.8% and 0.2% of normal specific Mg-dependent ATPase activity, and each of these preparations had very low ATP-synthesis activity. The yield of F1-ATPase from the four strains described was almost twice that obtained from a normal haploid strain. The kinetics of Ca-dependent ATPase activity were unusual in each of the four F1-ATPase preparations. It is likely that these four mutant uncD F1-ATPase preparations will prove valuable for further experimental study of the F1-ATPase catalytic mechanism.  相似文献   

7.
1. Preincubation of MgATP submitochondrial particles with EDTA or Tris.HCl liberated a measurable amount of ATPase inhibitor that could be rapidly purified using only trichloroacetic acid precipitation and heat treatment. 2. In spite of the emergence of high ATPase activity, a considerable amount of ATPase inhibitor was left in the particles. Comparative analysis of other submitochondrial preparations indicated that only AS-particles were effectively depleted. 3. The high ATPase activity of inhibitor-deficient particles, was labile at low temperature provided that the exposure to cold was done in the presence of MgATP. Other nucleotides could not substitute for ATP. Glycerol inhibited and salts enhanced the cold inactivation of membrane-bound F1-ATPase. Isolation of F1-ATPase from cold-inactivated particles yielded a soluble preparation of correspondingly lower activity. 4. It is concluded that together with the increase of ATPase activity, the ATP-dependent cold lability of membrane-bound F1-ATPase and the dislocation of ATPase inhibitor at non operative sites reveal the extent of ATPase complex disorganization.  相似文献   

8.
Magnesium-dependent ATPase (MgATPase) activity is associated with many E1-E2 or P-type transport ATPases including the sarcoplasmic reticulum (SR) calcium ATPase. The SR isolated from rat heart has a MgATPase activity which is 6-12 times faster than the MgATPase activity of the SR isolated from dog heart. To determine the origin of the high MgATPase activity of rat heart SR, we compared and contrasted cardiac SR isolated from both species. The preparations were similar in the following ways: (i) contamination by other organelles; (ii) the comigration of MgATPase activity with calcium-dependent ATPase (CaATPase) activity through a sucrose gradient; (iii) a similar ATPase activity sensitivity to pH and ATP concentration; (iv) the high and similar of sensitivity of ATPase activity to detergent; and (v) a similar protein profile. In both preparations, a single protein in the 105,000-Da region of polyacrylamide gels was phosphorylated by ATP, and the phosphorylated species was an acylphosphate formed in the presence and absence of calcium. Dimethyl sulfoxide, which slows acylphosphoenzyme breakdown, markedly inhibited both CaATPase and MgATPase activities of both preparations but not other enzyme activities. Importantly, the specific inhibitor of the SR calcium pump, thapsigargin, completely inhibited the CaATPase activity with an I50 of 6-7 nM; however, a higher concentration (I50 of 2 microM) was required to inhibit the MgATPase activity of the rat cardiac SR. These results provide evidence that the MgATPase activity of rat cardiac SR is part of the enzyme cycle of the calcium ATPase protein.  相似文献   

9.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

10.
Summary Soluble, oligomycin-insensitive ATPase released from beef heart mitochondria by chloroform extraction can be further purified by Sepharose 6B gel filtration. This purification increases enzyme activity 4–5 times (100–130 U/mg). According to specific activity, high purity and ability to reconstitute oligomycin-sensitive complex, isolated ATPase is quite comparable with enzyme preparations isolated by other methods.  相似文献   

11.
A R Robbins  R M Baker 《Biochemistry》1977,16(23):5163-5168
Membrane preparations from two independent ouabain-resistant HeLa cell clones, HI-B1 and HI-C1, each appear to contain two species of (Na,K)ATPase. Two-thirds of the total (Na,K)ATPase in each mutant is indistinguishable from the enzyme in preparations of wild type cells with respect to ouabain binding, ouabain inhibition of (Na,K)ATPase activity, and dependence of ATP hydrolysis on Na, Mg, K, and ATP concentration. The remaining (Na,K)ATPase activity in the mutants is up to 1000 and 10 000 times, respectively, more resistant to ouabain than wild type enzyme. Resistance results from a lower affinity of the mutant enzymes for the inhibitor. The presence of Na, K, or Mg has little or no effect on the degree of resistance expressed by the mutant enzymes, although the resistance of the wild type enzyme varies 400-fold in the presence of different ligands. Incubation with 5 X 10(-8) M ouabain abolishes the activity of the wild type enzyme without affecting the activity of the resistant enzymes. Using this procedure we compared the parameters of ATP hydrolysis via the resistant and wild type enzymes. Ouabain-resistant (Na,K)ATPase of HI-C1 has an apparent K0.5 for potassium 3-4 times higher than that of either wild type enzyme or the resistant enzyme of HI-B1.  相似文献   

12.
Microsomal fractions, both homogeneous in appearance and functionally operative, were isolated from a homogenate of rat cerebral cortex by fractionation in water. The preparations thus obtained contain the membranous elements of the endoplasmic reticulum, synaptic vesicles, and ribosomes. Esterase, ATPase, and glutamine synthetase were found to be present and fully functional in the microsomal fractions isolated in water. The contamination of the water-isolated microsomal fractions by mitochondria and lysosomes was found to be considerably lower than in microsomal pellets isolated in sucrose. The contamination by nerve ending particles, as judged by electron microscopy and by the levels of soluble lactic dehydrogenase entrapped in the cytoplasm of the particles, was also low. Most of the contamination by mitochondria and nerve ending particles could be removed by treatment of the microsomal pellet with 150 mM NaCl. Resistant to elution by this treatment is the lysosomal contamination as well as microsomal esterase and ATPase. Glutamine synthetase, on the other hand, was almost totally solubilized. Microsomal preparations isolated in water are also shown to contain amounts of protein, RNA, phospholipid, and ganglioside comparable to those found in microsomal preparations isolated in sucrose.  相似文献   

13.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60–80% in various preparations of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

14.
Homogeneous ATPase from rat liver mitochondria binds one mole of ADP per mole of enzyme reversibly, and with high affinity (KD = 1–2 μM). The high affinity binding site is highly specific for ADP and dADP. AMP does not bind. Agents which inhibit ATP hydrolysis have little inhibitory effect on the high affinity binding of ADP. These agents include adenylyl imidodiphosphate (AMP-PNP), azide, sucrose, and the divalent cation Mg++. AMP-PNP inhibits ATPase activity in phosphorylating membrane preparations of rat liver mitochondria by about 90 percent, but is without effect on ATP synthesis. These results are consistent with the view that the purified soluble, and the membrane-bound ATPase of rat liver mitochondria contain separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP.  相似文献   

15.
1. Citreoviridin was a potent inhibitor of the soluble mitochondrial ATPase (adenosine triphosphatase) similar to the closely related aurovertins B and D. 2. Citreoviridin inhibited the following mitochondrial energy-linked reactions also: ADP-stimulated respiration in whole mitochondria from ox heart and rat liver; ATP-driven reduction of NAD+ by succinate; ATP-driven NAD transhydrogenase and ATPase from ox heart submitochondrial particles. 3. The dissociation constant (KD) calculated by a simple law-of-mass-action treatment for the citreoviridin--ATPase complex was 0.5--4.2micron for ox-heart mitochondrial preparations and 0.15micron for rat liver mitochondria. 4. Monoacetylation of citreoviridin decreased its inhibitory potency (KD=2--25micron, ox heart; KD=0.7micron, rat liver). Diacetylation greatly decreased the inhibitory potency (KD=60--215micron, ox heart). 5. Hydrogenation of citreoviridin monoacetate diminished its inhibitory potency considerably. 6. No significant enhancement of fluorescence was observed when citreoviridin interacted with the mitochondrial ATPase.  相似文献   

16.
Whole cells of Escherichia coli having high aspartase (L-asparate ammonialyase, EC 4.3.1.1) activity were immobilized by entrapping into a kappa-carrageenan gel. The obtained immobilized cells were treated with glutaraldehyde or with glutaraldehyde and hexamethylenediamine. The enzymic properties of three immobilized cell preparations were investigated, and compared with those of the soluble aspartate. The optimum pH of the aspartase reaction was 9.0 for the three immobilized cell preparations and 9.5 for the soluble enzyme. The optimum temperature for three immobilized cell preparations was 5--10 degrees C higher than that for the soluble enzyme. The apparent Km values of immobilized cell preparations were about five times higher than that of the soluble enzyme. The heat stability of intact cells was increased by immobilization. The operational stability of the immobilized cell columns was higher at pH 8.5 than at optimum pH of the aspartase reaction. From the column effluents, L-aspartic acid was obtained in a good yield.  相似文献   

17.
J E Mahaney  C M Grisham 《Biochemistry》1992,31(7):2025-2034
The interaction of a nitroxide spin-labeled derivative of ouabain with sheep kidney Na,K-ATPase and the motional behavior of the ouabain spin label-Na,K-ATPase complex have been studied by means of electron paramagnetic resonance (EPR) and saturation-transfer EPR (ST-EPR). Spin-labeled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 +/- 0.1 mol of bound ouabain spin label per mole of ATP-dependent phosphorylation sites, even after repeated centrifugation and resuspension of the purified ATPase-containing membrane fragments. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (greater than 99%) of a broad resonance at 0 degrees C, characteristic of a tightly bound spin label which is strongly immobilized by the protein backbone. Saturation-transfer EPR measurements of the spin-labeled ATPase preparations yield effective correlation times for the bound labels significantly longer than 100 microseconds at 0 degrees C. Since the conventional EPR measurements of the ouabain spin-labeled Na,K-ATPase indicated the label was strongly immobilized, these rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements of ouabain spin-labeled Na,K-ATPase (a) cross-linked with glutaraldehyde and (b) crystallized in two-dimensional arrays indicated that the observed rotational correlation times predominantly represented the motion of large Na,K-ATPase-containing membrane fragments, as opposed to the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The results suggest that the binding of spin-labeled ouabain to the ATPase induces the protein to form large aggregates, implying that cardiac glycoside induced enzyme aggregation may play a role in the mechanism of action of the cardiac glycosides in inhibiting the Na,K-ATPase.  相似文献   

18.
Adenylyl imidodiphosphate (AMP-PNP), and analog of adenosine triphosphate (ATP), is a potent competitive inhibitor of mitochondrial ATPase activity. It inhibits both the soluble oligomycin-insensitive ATPase (Ki = 9.2 × 10?7 M) and the bound oligomycin-sensitive APTase (Ki = 1.3 × 10?6 M). ATPase activity of inside-out submitochondrial preparations are more sensitive to AMP-PNP in the presence of an uncoupler (Ki = 2.0 × 10?7 M). Mitochondrial ATP-dependent reactions (reversed electron transfer and potassium uptake) do not proceed if ATP is replaced with AMP-PNP; however, the analog does affect these systems. Oxidative phosphorylation of whole mitochondria and submitochondrial preparations were unaffected by AMP-PNP.  相似文献   

19.
We have examined the structure of the vacuolar ATPase of Neurospora crassa using negatively stained preparations of vacuolar membranes and of detergent-solubilized and gradient-purified ATPase complexes. We also examined the peripheral sector (V1) of the enzyme after it had been removed and purified. Using different stains, vacuolar membranes displayed ball-and-stalk structures similar to those of the intact mitochondrial ATPase. However, the vacuolar ATPase was clearly different from the mitochondrial ATPase in both size and structural features. The vacuolar enzyme had a much larger head domain with a distinct cleft down the middle of the complex. This domain was held above the membrane by a prominent stalk. Most intriguing was the presence of basal components. These structures appeared to project from the vacuolar membrane near the base of the stalks. Detergent-solubilized, gradient-purified ATPases displayed the same head, stalk, and basal features as those found with the intact enzyme on vacuolar membranes. The mitochondrial ATPase was significantly smaller, and no clefted head domains or basal components were observed. When V1 and F1 particles were directly compared, a significant difference in size and shape between these two soluble ATPase sectors was apparent. V1 retained all of the features seen in the globular head of the intact complex: V-shaped, triangular, and square forms around a stain-filled core.  相似文献   

20.
Three types of partially purified ATPase enzymes having different phospholipid contents and compositions have been prepared: (a) an enzyme whose phospholipid moiety has been replaced predominantly by dioleoyl lecithin (DOL-enzyme), with about the same phospholipid content as the original sarcoplasmic reticulum, (b) dipalmitoyl lecithin-replaced enzyme whose phospholipid content is 30% of that of DOL-enzyme (DPL-enzyme), and (c) a partially delipidated enzyme with about the same phospholipid content as DPL-enzyme but with the original sarcoplasmic reticulum phospholipid composition (del-enzyme). The temperature dependence of Ca2+-activated ATPase activity of these preparations showed clearcut differences; with DOL-enzyme there was no appreciable break in the Arrhenius plot in the 3-40 degrees range; DPL-enzyme showed a break at 29 degrees, and del-enzyme and sarcoplasmic reticulum one at 18 degrees. Transition temperatures obtained from ESR studies with the use of spin-labeled stearic acid incorporated into the membranes agreed with those derived from ATPase assays. Thermo-dynamic analysis of the ATP hydrolysis rates shows that DPL-enzyme has considerably larger values of activation enthalpy and activation entropy below the transition temperature (29 degrees) than those of the other preparations, while all enzyme preparations show similar free energies of activation. The ESR data show that below their transition temperatures DPL-enzyme, and to a lesser degree del-enzyme, have a strongly restricted motion of their phospholipid molecules as compared with either DOL-enzyme or sarcoplasmic reticulum. Studies on the formation and decomposition of phosphoenzyme have been carried out with the three types of ATPase preparations. At 0 degrees, the rate of inorganic phosphate liberation is 8 times lower in DPL-enzyme than in del-enzyme with little difference in the steady state level of phosphoenzyme. In DOL-enzyme, the level of phosphoenzyme and the rate of inorganic phosphate liberation are 1.8 and 3.5 times higher than the corresponding values obtained with del-enzyme. Addition of ADP to the phosphorylated intermediate of DPL-enzyme induces a fast reversal of the phosphorylation reaction. These results indicate that the physical state of the phospholipid molecules associated with the enzyme affects the decomposition of phosphoenzyme, with little effect on the phosphorylation reaction and its reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号