首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.
  • 1 Abundance of leaf-mining larvae of the outbreak species Eriocrania spp. was monitored in northern Sweden in 1955–67 and 1984–92 in a mountain birch forest rejuvenated by an Epirrita autumnata outbreak in 1954–55.
  • 2 Eriocrania mine density fluctuated in a regular biennial pattern, probably due to a semivoltine life cycle. The alternate year fluctuations had shifted phase between the two study periods.
  • 3 The density fluctuated at a significantly higher mean level and with a lower amplitude in the c. 10-year-old forest in the 1960s than in the 30-year-old forest in the 1980s. However, no difference was found in mine density between c. 30- and >60-year-old stands in the 1980s.
  • 4 Significant correlations between the density of mines in high-density years and date of budburst, and between rate of change between high-density years and the time between snow-melt and budburst indicate effects of weather. No correlation was found between yearly average mine density and date of budburst, precipitation or temperatures in May or June.
  • 5 No correlation was found between the mean densities of Eriocrania mines and E.autumnata caterpillars in the same and the two preceding years. However, in the first (1955) and highest of three studied E.autumnata peaks a negative effect on population density of Eriocrania was indicated.
  • 6 A significant, negative correlation between the number of Eriocrania mines and E.autumnata caterpillars on single branches was found in three out of eighteen years. The separation of caterpillars and mines at branch level indicates an effect of avoidance at intermediate population densities.
  相似文献   

2.
1. Yearly population estimates of the green oak leaf roller moth, Tortrix viridana (Lepidoptera: Tortricidae), and the winter moth, Operophtera brumata (Lepidoptera: Geometridae), were taken from the pedunculate oak, Quercus robur, from 1951 to 1966 in Wytham Woods, Oxfordshire, U.K. Larval mortality from parasitoids was recorded for both species over the same period. 2. Operophtera brumata population density fluctuated around a constant mean, whereas T. viridana population density exhibited a linear decline over the sampling period. Population counts were subjected to time-series analysis after the linear decline was removed from the T. viridana data by detrending. Multiple regression models were built so that variation in the per capita rate of increase of each population could be partitioned among (a) current and previous population density, (b) current and previous population density of the second moth species, and (c) rates of larval parasitism. 3. Multiple regression analysis suggested that variation in the per capita rate of increase of O. brumata could be explained by negative feedback from O. brumata density at T–2 (32%), a negative relationship with T. viridana density at T–1 (18%), and a positive relationship with parasitism suffered by T. viridana at T–1 (24%). 4. The T. viridana population time-series was dominated by a rapid feedback process such that per capita rate of increase at time T was negatively related to population density at time T–1, explaining 53% of variance in population growth rate. Per capita rate of increase was unrelated to larval parasitism or densities of O. brumata. 5. In light of previous life-table and experimental studies on O. brumata and T. viridana, the current analyses suggest that pupal predation (data not presented) and interspecific competition are significant determinants of O. brumata population growth rates in Wytham Woods. In contrast, T. viridana population growth rates appear to be dominated by rapid negative feedback consistent with intraspecific competition.  相似文献   

3.
We examined how performance of Operophtera brumata (Lepidoptera) larvae was affected by nitrogen (N) fertilization of boreal forest understorey vegetation. We monitored larval densities on Vaccinium myrtillus plants for a period of 7 years in a field experiment. Preliminary results indicated that the N effect on larval densities was weak. To examine if this was due to indirect interactions with a plant pathogen, Valdensia heterodoxa, that share the same host plant, or due to top-down effects of predation, we performed both a laboratory feeding experiment (individual level) and a bird exclusion experiment (population level) in the field. At the individual level, altered food plant quality (changes in plant concentration of carbon, N, phenolics, or condensed tannins) due to repeated infection by the pathogen had no effect on larval performance, but both survival to the adult stage and adult weight were positively affected by N fertilization. Exclusion of insectivorous birds increased the frequency of larval damage on V. myrtillus shoots, indicating higher larval densities. This effect was stronger in fertilized than in unfertilized plots, indicating higher bird predation in fertilized plots. Predation may thus explain the lack of fertilization effect on larval densities in the field experiment. Our results suggest that top-down effects are more important for larval densities than bottom-up effects, and that bird predation may play an important role in population regulation of O. brumata in boreal forests.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
The two forest-defoliating geometrid moth species Operophtera brumata and Epirrita autumnata are known to exhibit different altitudinal distribution patterns in northern birch forests. One possible explanation for this is that altitudinal climatic variation differentially affects the performance of two species through mismatching larval and host plant phenology. We explored this hypothesis by investigating the relationship between larval phenology and leaf phenology of Betula pubescens, which is the main host plant of both moth species, along ten replicate altitudinal transects during two springs with contrasting climate in northern Norway. There was a distinct monotonous cline in host plant phenology with increasing altitude in both years of the study, but the development of the leaves were generally 14 days later in the first of the 2 years due to cold spring weather. We found that larval development of both species closely tracked host plant leaf phenology independent of altitude and year. However, at the time of sampling, E. autumnata was approximately one instar ahead of O. brumata at all altitudes, probably reflecting that E. autumnata has faster early instar growth than O. brumata. The abundance of O. brumata was lowest at the altitudinal forest-line, while E. autumnata was lowest near sea level. Our results do not indicate that the altitudinal distribution patterns of the two moth species is due to any phenological mismatch between larval and host plant phenology. We suggest rather that natural enemies at low altitudes limit larval survival and thus abundance of E. autumnata, while an early onset of winter at the forest limit reduces survival of late eclosing adults of O. brumata.  相似文献   

5.
E. L.Zvereva  M. V.Kozlov 《Oikos》2006,115(3):413-426
In areas disturbed by pollution, populations of herbivorous insects may reach high densities. This study was conducted to test one of the hypotheses attempting to explain this phenomenon – that pollution creates an enemy-free space for herbivores. We monitored the population densities of Eriocrania leaf-mining moths on mountain birch, Betula pubescens subsp. czerepanovii , in the vicinity of the nickel–copper smelter in Monchegorsk (Kola Peninsula, NW Russia) over twelve years (1994–2005) and assessed larval mortality from parasitoids, ants and birds. The mean density (mines/birch leaf area) of Eriocrania populations in severely disturbed habitats (industrial barrens) was about 2.7 times higher, and peak densities 2–4 times higher, than in pristine forests. Temporal population variability (measured as the coefficient of variation of log-transformed densities) increased with an increase in pollution load. The proportion of infested trees was not affected by pollution, but mine distribution among trees was more clumped in the polluted sites. Eriocrania populations in disturbed sites fluctuated independently of each other, whereas populations in forest sites fluctuated in synchrony. Larval mortality caused by parasitoids was lower in disturbed sites only during those years when populations of Eriocrania reached high densities; mortality from ants and birds did not differ between disturbed and undisturbed habitats in either high or low density years. In undisturbed forests the rate of population change correlated negatively with previous-year parasitism, suggesting that parasitoids are the key demographic factor in Eriocrania population dynamics. In the habitats heavily disturbed by pollution no such correlation was found, which means that negative feedback with parasitoids is disrupted: parasitoids fail to follow host population growth, thus creating an enemy-free space for Eriocrania leafminers.  相似文献   

6.
We tested the hypothesis that air pollution may affect population densities of birch-feeding leafminers via changes in ant predation. Foraging activity of three ant species (Formica rufa, F. fusca andF. lemani), predation rates and population densities of both solitary and gregariousEriocrania (Lepidoptera: Eriocraniidae) miners were investigated at 13 sites around the Harjavalta copper-nickel smelter, SW Finland. Ant species differed in their distribution patterns relative to pollution. However, the total percentage of birch trees foraged by ants (all species combined) showed no correlation with the distance from the factory complex. As a result, no clear trends in predation rates were apparent in relation to the distance from the pollution source for either solitary or gregariousEriocrania species. Densities of the solitaryEriocrania species tended to increase with the distance from the pollution source whereas densities of the gregariousE. haworthi peaked close to the factory complex. No corresponding differences in predation rates between solitary and gregarious miners were found. Ant predation, thus, did not explain density patterns ofEriocrania miners in the polluted area.  相似文献   

7.
The density and survival of leafminers were examined on 50 sun leaves from each of 65 Quercus dentata Thunb. individuals in northern Japan in 1997 and 1998. Phyllonorycter (two species), Caloptilia (one species) and Stigmella (three species) were abundant or common on this oak in the study area. These leafminers appeared after mid-June, whereas most externally feeding caterpillars occurred from late May to early June when the water content and nitrogen concentration of leaves were high. The density of these leafminers was about four times higher in 1998 than in 1997. A negative correlation was more often observed between mine density and leaf size, leaf wet weight per area or leaf toughness in the Phyllonorycter species, but the opposite correlation was more frequent for Caloptilia and Stigmella species. Conversely, no clear relation was observed between the survival of Phyllonorycter larvae and leaf traits. In all leafminers except the gregarious Stigmella species, the mine density was more often positively correlated with leaf damage by chewing insects, and also the survival of Phyllonorycter larvae was often positively correlated with leaf damage. In the Phyllonorycter species, the survival of larvae tended to increase with the increase in density at the autumn generation. The correlation in the densities of mines between the summer and autumn generations was more frequently positive in the Phyllonorycter and Caloptilia species. In addition, the densities of different leafminers were often positively correlated. Thus, relations among leafminers, between leafminers and externally feeding caterpillars, and also between herbivores and host plants are complicated.  相似文献   

8.
ABSTRACT.
  • 1 Mechanical damage to birch (Betula pendula Roth) leaves leads to an increase in the concentration of phenolic compounds, which spreads throughout the leaf within 8 days.
  • 2 Coleophora serratella L. (Lepidoptera: Coleophoridae) apparently responds to this chemical change over a similar time scale. Within 24 h of pin-pricking leaves the casebearer moves from the immediate vicinity of the damage, but is just as likely to move to an undamaged portion of the damaged leaf as to vacate the leaf entirely. After 8 days mines on undamaged portions of damaged leaves were significantly smaller than mines on undamaged leaves.
  • 3 Furthermore, Coleophora serratella reared on damaged trees took an average of 3 days longer to develop than those reared on undamaged trees.
  • 4 It has been suggested that increased movement in response to damage-induced chemical changes causes hyperdispersed damage on plant foliage. Both within and between-leaf casebearer damage patterns were shown to be aggregated on birch.
  • 5 Thus although mechanical damage can induce chemical and behavioural changes in the field, these are not reflected in the observed damaged patterns. We speculate on several possible reasons for this.
  相似文献   

9.
We explored the impacts of industrial air pollution on the behaviour of the leafmining moth Stigmella lapponica (Wocke) (Lepidoptera: Nepticulidae) by comparing the characteristics of larval gallery mines in mountain birch [Betula pubescens ssp. czerepanovii (Orlova) Hämet‐Ahti (Betulaceae)] leaves collected from unpolluted forests and from heavily polluted industrial barrens surrounding the copper‐nickel smelter in Monchegorsk in north‐western Russia. Population density of S. lapponica, survival of larvae, length of the completed mine, and width of its terminal part did not differ between polluted and unpolluted sites. Females in unpolluted sites only rarely (16%) oviposited on the apical half of the leaf and the larval mortality in mines that started in the apical part of the leaf was 83%. A significantly larger (38%) proportion of mines started in the apical half of the leaves in polluted sites, and the larval mortality in these mines was only 45%. The between‐habitat difference in the choice of the oviposition sites by S. lapponica is the first demonstration of the adaptive plasticity of oviposition behaviour in a leafmining insect. This difference was not explained by specific leaf weight which did not vary within leaves. Larvae mining in polluted leaves extended 25% farther between turns, and the galleries turned more sharply than in unpolluted leaves. This result confirms the abilities of leafmining larvae to evaluate the quality of the ingested food and adjust their behaviour accordingly. Thus, pollution modifies both the preference of S. lapponica females for oviposition sites within a birch leaf and the behaviour of S. lapponica larvae mining these leaves. This is one of the first records of changes in insect behaviour in natural environment disturbed by industrial pollution.  相似文献   

10.
Abstract.
  • 1 The possibility of interactions between leaf-miners in the genus Eriocrania and Coleophora serratella L. on birch (Betula pendula Ehrh. and B.pubescens Roth.) was studied via: (i) co-occurrence patterns on random samples of leaves; (ii) palatability of Eriocraniidae-mined leaves to C.serratella, in laboratory and field preference tests.
  • 2 In the field, C.serratella and Eriocrania spp. fed on common leaves less frequently than expected by chance. This result is consistent with, and could be explained by, the avoidance of mined leaves shown by C.serratella in most of the feeding trials.
  • 3 Avoidance was not observed at the between-tree level, i.e. the number of leaves mined by each type of insect was unrelated. However, when tree species was taken into account, an inverse distribution was observed: mine abundance was higher for Eriocrania spp. on B.pubescens, whereas for C.serratella it was higher on B.pendula.
  • 4 B.pubescens leaves mined by Eriocrania spp. had consistently higher phenolic contents and were better at precipitating proteins than unmined leaves. These induced chemical changes could explain the reduced preference shown by C.serrate1la for Eriocrania mined leaves.
  • 5 We speculate about the evolution of adult host-plant selection shown by these insects in response to potential larval interactions.
  相似文献   

11.
  • 1 We examined the foraging behaviour of the parasitoid wasp, Closterocerus tricinctus (Ashmead) (Chalcidoidea: Eulophidae), as it visited larvae of the leaf-mining moth, Cameraria hamadryadella (Lepidoptera: Gracillariidae), in an outbreak population.
  • 2 We tracked females of C.tricinctus, recording the time spent searching for mines and handling host larvae. The density of leaf-mines (host larvae) and their condition were recorded for each leaf visited. A subset of leaves visited by C.tricinctus was enclosed in fine mesh bags so that foraging success could be determined by rearing or dissection. The average density of mines and the average leaf-area mined was estimated for a random sample of leaves from each tree.
  • 3 The selection of leaves upon which to forage appears to be density-dependent. C.tricinctus visits leaves with leaf-mine densities twice the average, and when switching leaves lands directly on leaf-mines 5 times more often than expected assuming random landings.
  • 4 The total time spent foraging on a leaf, the average time spent handling hosts, and the total search time within leaves tend to decline on leaves with many hosts, but the observed declines are not statistically significant.
  • 5 The proportion of leaf-mines visited within a leaf is strongly inversely density-dependent. 30% of visits to leaf-mines are re-visits and 29% of handling time is spent re-handling previously visited hosts. Furthermore, only 21% of visits to mines lead to successful parasitism. We suggest that self-interference and the avoidance behaviour of the host may reduce the number of visits of leaf-mines by C.tricinctus within a leaf.
  • 6 The effect of the strongly inversely density-dependent foraging investment within leaves is to offset the observed density-dependent pattern of leaf visitation making the overall spatial pattern of visitation by C.tricinctus to mines of C.hamadryadella inversely density-dependent.
  • 7 We suggest that the uncertainty of C.tricinctus surviving on multiply mined leaves because of density-dependent host mortality due to intraspecific competition in high-density host populations, the rarity of high-density host populations, and the rarity of multiply-mined leaves in low-density host populations combine to select against an aggregative response within leaves by C.tricinctus.
  相似文献   

12.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.  相似文献   

13.
In prey‐predator systems, top‐down effects can be a powerful determinant for spatial distributions of prey through their search for enemy‐free space. Leafminers live and eat within leaves, making feeding tracks called mines, and mine conspicuousness exposes them to a high risk of parasitism. Those lepidopteran leafminers that use lower leaf surfaces as mining sites show wide evolutionary radiation. We hypothesized that leafminers making mines on the lower surface are less often detected by parasitoids and thus have a selective advantage in avoiding parasitism compared to those on the upper surface. To investigate the adaptiveness of lower‐surface mining, we examined the relationship between parasitism and within‐leaf mine distribution for 3 years using a field population of the leafminer Phyllocnistis spec. (Lepidoptera: Gracillariidae, Phyllocnistinae), which prefers the lower surface of leaves of the Japanese privet, Ligustrum japonicum Thunb. (Oleaceae). Parasitoid attack was more frequent in the upper‐surface mines than in the lower‐surface mines and on leaves with upper‐surface mines than on leaves with only lower‐surface mines. When both surfaces were mined, leafminers on the lower surface could avoid parasitism. Upper‐surface mines were attacked by more parasitoid species as compared to lower‐surface mines. Although the results demonstrated that mining on the lower surface was advantageous in avoiding parasitism, the vulnerability of lower‐surface mines to parasitism varied depending on their abundance. When many lower‐surface mines were present, lower‐surface mines suffered a higher parasitism rate than upper‐surface mines, probably because parasitoids formed search images for and concentrated on lower‐surface mines. This study suggests that the preferential use of the lower leaf surface by leafminers is in part attributed to interactions with parasitoids.  相似文献   

14.
Summary At Sand Lake, Leon County, Florida, mines of Stilbosis quadricustatella, a leaf-mining moth, occur on sand live oak trees (Quercus geminata) over a broad range of densities. Some trees have fewer than 2% of their leaves mined (lightly infested), others up to 70% (heavily infested). Similar levels of infestation are maintained on the same trees year after year. There are no significant negative correlations of miner density per tree with any mortality factor that might explain miner preferences for certain trees. Nor is there a positive correlation with host leaf quality as measured by foliar nitrogen or by total or individual amino acid concentrations of host leaves. Egg-transfer experiments showed that larvae from eggs transferred to lightly infested trees were more likely to be killed by leaf abscission than were those that were transferred to and developed on heavily infested trees. This is the first demonstration that variation in rates of leaf abscission could be an important cause of the observed distribution pattern of sessile insects between conspecific host plants.  相似文献   

15.
16.
Red autumn colouration of trees is the result of newly synthesized anthocyanin pigments in senescing autumn leaves. As anthocyanin accumulation is costly and the trait is not present in all species, anthocyanins must have an adaptive significance in autumn leaves. According to the coevolution hypothesis of autumn colours, red autumn leaves warn herbivorous insects – especially aphids that migrate to reproduce in trees in the autumn – that the tree will not be a suitable host for their offspring in spring due to a high level of chemical defence or lack of nutrients. The signalling allows trees to avoid herbivores and herbivores to choose better host trees. In this study the coevolution hypothesis was tested with four deciduous tree species that have red autumn leaf colouration – European aspen (Populus tremula L.) (Salicaceae), rowan (Sorbus aucuparia L.) (Rosaceae), mountain birch [Betula pubescens ssp. czerepanovii (NI Orlova) Hämet‐Ahti], and dwarf birch (Betula nana L.) (Betulaceae), and with two generalist herbivores, the autumnal moth [Epirrita autumnata (Borkhausen)] and the winter moth [Operophtera brumata (L.)] (both Lepidoptera: Geometridae). Anthocyanin concentrations of autumn leaves were determined from leaf samples and the growth performance parameters of the moth larvae on the study trees were measured in the spring. Trees with higher anthocyanin concentration in the autumn were predicted to be low‐quality food for the herbivores. Our results clearly showed that anthocyanin concentration was not correlated with the growth performance of the moths in any of the studied tree species. Thus, our study does not support the coevolution hypothesis of autumn colours.  相似文献   

17.
Species range displacements owing to shifts in temporal associations between trophic levels are expected consequences of climate warming. Climate‐induced range expansions have been shown for two irruptive forest defoliators, the geometrids Operophtera brumata and Epirrita autumnata, causing more extensive forest damage in sub‐Arctic Fennoscandia. Here, we document a rapid northwards expansion of a novel irruptive geometrid, Agriopis aurantiaria, into the same region, with the aim of providing insights into mechanisms underlying the recent geometrid range expansions and subsequent forest damage. Based on regional scale data on occurrences and a quantitative monitoring of population densities along the invasion front, we show that, since the first records of larval specimens in the region in 1997–1998, the species has spread northwards to approximately 70°N, and caused severe defoliation locally during 2004–2006. Through targeted studies of larval phenology of A. aurantiaria and O. brumata, as well as spring phenology of birch, along meso‐scale climatic gradients, we show that A. aurantiaria displays a similar dynamics and development as O. brumata, albeit with a consistent phenological lag of 0.75–1 instar. Experiments of the temperature requirements for egg hatching and for budburst in birch showed that this phenological lag is caused by delayed egg hatching in A. aurantiaria relative to O. brumata. A. aurantiaria had a higher development threshold (LDTA.a.=4.71 °C, LDTO.b.=1.41 °C), and hatched later and in less synchrony with budburst than O. brumata at the lower end of the studied temperature range. We can conclude that recent warmer springs have provided phenological match between A. aurantiaria and sub‐Arctic birch which may intensify the cumulative impact of geometrid outbreaks on this forest ecosystem. Higher spring temperatures will increase spring phenological synchrony between A. aurantiaria and its host, which suggests that a further expansion of the outbreak range of A. aurantiaria can be expected.  相似文献   

18.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) was released in the eastern coastal regions of South Africa for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. Despite widespread establishment, its ability to inflict sufficient foliar damage has been questioned. This laboratory study was initiated to provide some insight into how increasing fly populations (represented by 1, 5 and 10 mating pairs per plant) are likely to influence leaf-mining intensity and the levels of damage. On average, individual plants exposed to five mating pairs displayed significantly more larval mines (248) than those exposed to single pairs (69), while plants exposed to 10 mating pairs were intermediate (125). Similarly, at densities of five mating pairs per plant, the percentages of available leaves that were exploited peaked at 36%, while the percentages of available leaf area that were removed by larval leaf mining peaked at 22%. The non-linear relationship between leaf mining and fly density and the high percentages of unexploited leaves suggest that leaf mining may be influenced by leaf quality, the nature of which is currently unconfirmed. These results also suggest that the levels of leaf exploitation by C. eupatorivora will be too low to have any meaningful impact in the field. Field evaluations, to be reported in a later contribution, have indeed confirmed that the impact of C. eupatorivora on mature populations of C. odorata is negligible.  相似文献   

19.
Summary Since the early 1980s, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae) has emerged as a serious pest of Sitka Spruce, Picea sitchensis Bong. plantations in southern Scotland. Outbreaks are characterised by susceptible sites within plantations which can occur immediately adjacent to resistant sites. We investigated the level of some nutrients in the trees, the date of budburst of the trees, and the numbers of some potential predators of winter moth pupae. None could satisfactorily explain outbreak patterns. Although foliage analysis demonstrated that many trees were marginal or deficient in phosphorus, nitrogen and potassium, these deficiencies were not related to the susceptibility of a site. Within sites, the numbers and weights of O. brumata were positively related to phosphorus content and negatively related to calcium content of foliage. Other evidence suggests, however, that these correlations may not represent direct effects of phosphorus and calcium on larval growth and survival. Date of budburst, which commonly determines susceptibility of deciduous hosts to O. brumata, was unrelated to density, and pupal predators were more, not less, abundant in susceptible sites. Although it is difficult to distinguish between factors that initiate outbreaks and those that maintain them, these data suggest that nutrient deficiencies of trees, budburst date, and the distribution of pupal predators of the winter moth cannot explain patterns of outbreak of the winter moth on spruce.  相似文献   

20.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号