首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in Chloroplast DNA Levels during Growth of Spinach Leaves   总被引:1,自引:0,他引:1  
In young spinach leaves, 1–4 mm long, 7–10% of thetotal DNA of the leaf was chloroplast (pt) DNA. Growth in theseleaves was mainly by cell division with plastid division keepingpace with cell division and maintaining about 10 plastids percell. About 1% of the leaf cells were formed in 4.0 mm leaves.Both cell division and cell expansion contribute to the nextstage of leaf growth, which was quantitatively the major periodof new cell formation, nuclear DNA synthesis and ptDNA synthesis.Relative to the nuclear DNA level ptDNA levels rose to 21% ofthe total DNA and chloroplast.plastome copy numbers from 1500to 5000 per cell while chloroplast numbers rose from 10 to 30per cell. In the final period of leaf growth, cell expansionwas the main determinant of growth and chloroplast number percell rose to 180. In contrast to young leaves, newly emergedcotyledons contained 20% of their DNA as ptDNA and, during cellexpansion, cell number per cotyledon doubled. On average, thecells became octoploid, and chloroplast numbers and plastomecopy numbers rose to 500 and 22 000 per cell respectively. Similarlevels of nuclear ploidy, chloroplast number and plastome copynumber were induced in the first leaf pair of spinach followingdecapitation. When senescence was induced in mature leaves byshading, no loss of nuclear or ptDNA occurred. Following theonset of leaf yellowing and a form of senescence induced bynitrogen deficiency in leaves which had not fully expanded,there was preferential loss of ptDNA which fell from 8200 to3700 plastome copies per cell over an 11 d period. Key words: Spinach, Chloroplast, DNA, Ploidy  相似文献   

2.
Chloroplast DNA in Expanding Spinach Leaves   总被引:2,自引:0,他引:2  
The proportion of chloroplast DNA in total DNA from spinachleaves has been measured using the second order reassociationkinetics of a 3H-labelled chloroplast DNA probe in total DNAextracts. There was no significant difference between the proportionof chloroplast DNA in the basal and distal halves of 2 cm leavesand in the distal halves of 5, 8, and 10 cm leaves. The meanof all the observations was 21.1 ± 0.7%. There was littlechange in the average total DNA content of cells from any ofthe leaves but cells from larger leaves contained 130–170chloroplasts while cells from the basal half of 2 cm leavescontained about 20 chloroplasts which were smaller than thosefrom the larger leaves. Consequently the average number of copiesof the plastome per chloroplast in large leaves was about 30(5 x 10–15 g DNA) and in the smaller chloroplasts in thebase of 2 cm leaves was 200 (32 x 10–15 g DNA). Stainingwith the DNA fluorochrome 4, 6-diamidino-2 phenyl indole (DAPI)showed 10–15 plastid nucleoid areas in chloroplasts oflarger leaves, suggesting there are 2–3 copies of theplastome per plastid nucleoid.  相似文献   

3.
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post‐meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI‐based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring‐shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20–750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20‐fold even within individual organelles, with average values between 2.6‐fold and 6.7‐fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70–130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600–3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed‐field electrophoresis, restriction of high‐molecular‐weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single‐stranded and double‐stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.  相似文献   

4.
Changes in chloroplast number during pea leaf development   总被引:3,自引:0,他引:3  
Protoplasts were prepared from pea (Pisum sativum L.) leaves throughout development and their contents spread in a monolayer to determine the number of chloroplasts per cell. This approach permitted the rapid analysis of more than 100 cells at each stage of development. The average number of chloroplasts per cell increased from 24±10 to 64±20 during greening and expansion of the first true foliage leaves; all cells containing chloroplasts apparently increase their chloroplast number. A parallel increase in the amount of DNA per nucleus was not observed. As the leaves senesced the chloroplast number gradually decreased to 44±12. We have correlated these changes with our previous results on the percentage of chloroplast DNA per cell. Chloroplast multiplication resulted in a 2.7-fold dilution (from 272 to 102) of the number of copies of the chloroplast DNA molecule per plastid.  相似文献   

5.
The amounts of chloroplast DNA and nuclear DNA in the cellsof spinach leaf discs cultutred under different light regimeshave been measured. The cellular level of ctDNA increased 10-foldin discs cultured in white light and was accompanied by a 2-foldincrease in the cellular level of nuclear DNA. In low intensitygreen light the cellular level of ctDNA increased 6-fold butwas not accompanied by an increase in the level of nuclear DNA.No net DNA synthesis on a per cell basis occurred in discs culturedin darkness. Chloroplasts of uncultured leaf discs containedan average of 83 plastome copies. The number of plastome copiesper chloroplast after 6 days culture decreased to 36 copiesin darkness, remained almost constant at 73 copies in whitelight and increased to 215 copies in low intensity green light. These results suggest that ctDNA replication can be independentof cellular levels of nuclear DNA and chloroplast division.  相似文献   

6.
The abundances of chloroplasts in leaves on the main stems ofChenopodium album at different height levels were investigatedin relation to the photosynthetic capacity and light environmentof the leaves. (1) The number of chloroplasts per mesophyllcell decreased with descending position of leaves, except foryoung developing leaves at the top of plants that had smallerchloroplast numbers per cell than matured leaves beneath them.Contents of chlorophyll and ribulose-1,5-bisphosphate carboxylase/oxygenaseper leaf area that were highest in the topmost young leavesand decreased with decreasing height level indicate that thereis a vertical gradient of chloroplast abundance per leaf areadecreasing from the top of the leaf canopy with depth. (2) Light-saturatingrate of photosynthetic oxygen evolution per leaf area of maturedleaves decreased more steeply with decreasing leaf positionthan the chloroplast number per cell. Gradients of chlorophylland the enzyme protein contents were also steeper than thatof the chloroplast number. Loss of photosynthesis in lower leavesis, therefore, ascribed partly to loss of whole chloroplastsand partly to reduced photosynthetic capacities of the remainingchloroplasts. (3) The chloroplast number per cell in newly expandedsecond leaves was comparable to those in leaves that have developedat later stages of the plant growth but decreased graduallyduring leaf senescence both in the dark and light. The formationof the vertical gradient of chloroplast abundance is, therefore,ascribed to loss of whole chloroplasts during senescence ofleaves. (4) Irradiance a leaf receives decreased sharply fromthe top of the canopy with depth. The physiological or ecophysiologicalsignificance of the vertical distribution of chloroplasts amongleaves was discussed taking light environments of leaves intoconsideration. (Received July 31, 1995; Accepted October 20, 1995)  相似文献   

7.
Summary The second leaf ofOryza sativa develops, grows and ages within the 10 days that follow imbibition under our controlled continuous-light conditions. Proplastids in the leaf cells develop, mature to become chloroplasts and then age and disintegrate. In an examination of this life process, we studied first the behavior and the number of copies of plastid DNA and levels of chlorophyll by epifluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI), and by fluorimetry with a video-intensified microscope photon-counting system (VIMPCS). The results indicated that the number of copies of the plastid DNA per plastid increased and reached to plateau value of approximately 100 at the time when the elongation of the mesophyll cells and the enlargement of chloroplasts ceased 96 h after imbibition. However, 24 h later, the number of copies of plastid DNA per chloroplast began to decrease and fell rapidly to approximately 30 copies within 168 h after imbibition. Our examination of the number of chloroplasts per mesophyll cell indicated that no division of chloroplasts occurred more than 72 h after imbibition. The results suggest that the decrease in number of copies of plastid DNA per chloroplast was not due to an increase in the number of chloroplasts, but that this decrease was caused by degradation by unidentified enzymes. Since visible senescence of leaves, which was characterized by development of a yellowish color, began 168 h after imbibition, the degradation of plastid DNA seemed to occur 48 h before the visible leaf senescence. When we tested the nucleolytic activities in the second leaves after imbibition by digestion of plasmids in vitro and DNA-SDS polyacrylamide gel electrophoresis, five Ca2+–, four Zn2+–, and four Mn2+–dependent nucleases were detected in the leaf blades, and one of the Ca2+–, two of the Zn2+–, and two of the Mn2+–dependent nucleases were also identified in a purified preparation of intact chloroplasts. When the activity of the Zn2+–dependent nucleases (51 kDa and 13 kDa) increased markedly, degradation of the plastid DNA occurred. These results suggest that the destruction of chloroplast DNA, which occurs approximately 48 h before leaf yellowing, could be due to the activation of some metallo-nucleases and, furthermore, this enzymatic degradation propels the leaf towards senescence.  相似文献   

8.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   

9.
The aim of this work was to investigate starch granule numbers in Arabidopsis (Arabidopsis thaliana) leaves. Lack of quantitative information on the extent of genetic, temporal, developmental, and environmental variation in granule numbers is an important limitation in understanding control of starch degradation and the mechanism of granule initiation. Two methods were developed for reliable estimation of numbers of granules per chloroplast. First, direct measurements were made on large series of consecutive sections of mesophyll tissue obtained by focused ion beam-scanning electron microscopy. Second, average numbers were calculated from the starch contents of leaves and chloroplasts and estimates of granule mass based on granule dimensions. Examination of wild-type plants and accumulation and regulation of chloroplast (arc) mutants with few, large chloroplasts provided the following new insights. There is wide variation in chloroplast volumes in cells of wild-type leaves. Granule numbers per chloroplast are correlated with chloroplast volume, i.e. large chloroplasts have more granules than small chloroplasts. Mature leaves of wild-type plants and arc mutants have approximately the same number of granules per unit volume of stroma, regardless of the size and number of chloroplasts per cell. Granule numbers per unit volume of stroma are also relatively constant in immature leaves but are greater than in mature leaves. Granule initiation occurs as chloroplasts divide in immature leaves, but relatively little initiation occurs in mature leaves. Changes in leaf starch content over the diurnal cycle are largely brought about by changes in the volume of a fixed number of granules.  相似文献   

10.
The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.  相似文献   

11.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

12.
Pyke KA  Leech RM 《Plant physiology》1994,104(1):201-207
A nuclear recessive mutant of Arabidopsis thaliana, arc5, has been isolated in which there is no significant increase in chloroplast number during leaf mesophyll cell expansion and in which there are only 13 chloroplasts per mesophyll cell compared with 121 in wild-type cells. Mature arc5 chloroplasts in fully expanded mesophyll cells are 6-fold larger than in wild-type cells. A large proportion of arc5 chloroplasts also show some degree of central constriction, suggesting that the mutation has prevented the completion of the chloroplast division process. To examine the interaction of arc loci, a double mutant was constructed between arc1, a mutant possessing many small chloroplasts, and arc5. A second double mutant was also constructed between arc3, a previously discovered mutant also possessing few large chloroplasts per cell, and arc1. Analysis of these double mutants shows that chloroplast number per mesophyll cell is greater when arc5 and arc3 mutations are expressed in the arc1 background than when expressed alone. The cell-specific nature of arc mutants was also analyzed. The phenotypic traits characteristic of arc3 and arc5 are a reduction in chloroplast number and an increase in chloroplast size in mesophyll cells: these changes are also observed in reduced form in the epidermal and guard cell chloroplasts of arc3 and arc5 plants. Analysis of parenchyma sheath cell chloroplasts suggests that in leaves of arc1 plants the normal developmental distinction between mesophyll and parenchyma sheath chloroplasts is perturbed. The relevance of these findings to the analysis of the control of chloroplast division in mesophyll cells is discussed.  相似文献   

13.
The rate of RNA synthesis in chloroplasts from the primary leavesof Phaseolus vulgaris L. cv. Canadian Wonder was measured invitro as plant age increased. The rate per leaf began to fallbefore the leaf was 70% expanded. At full expansion, activityhad fallen by 70%. Chloroplast RNA synthesis per unit chlorophyllwas falling before the leaf was 25% expanded. When all parts of the plant above the mature primary leaveswere removed (detopping) chloroplast RNA synthesis in theseleaves rose within 36 h. The rate increased to a maximum 3–4d after detopping, when it was 5–10 times control values;thereafter it fell again. The chlorophyll content began to increaseabout 4 d after detopping, eventually rising by 100%. Detoppingcaused a 3-fold increase in the Triton X-100-soluble DNA contentof chloroplast preparations, measured after 3.5 d. At that timethe rate of RNA synthesis per unit Triton-soluble DNA was thesame in chloroplasts from the primary leaves of intact and detoppedplants. Detopping also resulted in an increase in the depthof the leaf palisade layer. The effects of detopping on chloroplasts were prevented by darknessand reduced by shading. Increased chloroplast RNA polymerase activity was also inducedin the primary leaves by placing a polythene bag over intactplants, enclosing everything above these leaves. Removal ofthe roots from detopped plants prevented the rise in the rateof chloroplast RNA synthesis.  相似文献   

14.
The first leaves (40 millimeters long) of 4-day-old light-grown Avena sativa L. cv Victory I seedlings contained a complete age sequence of cells from the base to the tip, and within these tissues all stages of chloroplast development could be observed. Although chloroplasts underwent progressive development, a marked increase in number of thylakoids per granum, in chloroplast volume, and in chlorophyll content occurred in the region between 20 and 30 millimeters from the base. Photosynthetic CO2 fixation (per unit chlorophyll) increased markedly during chloroplast development and closely followed structural changes in chloroplasts. It was also found that the partitioning of photosynthates differed greatly in the segment from 30 to 40 millimeters (at the tip of the leaf) compared with the segment nearer to the leaf base, although both total 14CO2 fixation and chlorophyll content per segment did not change significantly along the length of the leaves. As the thylakoid system reached full maturation, partitioning of photosynthates into sucrose increased but partitioning decreased into starch, lipids, and phosphorylated intermediates.  相似文献   

15.
The kinetic complexity of chloroplast DNA isolated from the chromophytic alga Olisthodiscus luteus has been determined. Using optical reassociation techniques, it was shown that the plastid DNA of this alga reacted as a single component with a second order rate constant of 4.1 molar−1 and second−1 (Cot½ 0.24 molar second) under conditions equivalent to 180 millimolar Na+ and 60°C. Given the 92 × 105 dalton complexity calculated for this chloroplast genome, an Olisthodiscus cell contains 650 plastome copies. Although this complement remains constant throughout the growth cycle of the organism, the ploidy level of an individual chloroplast shows significant plasticity and is dependent upon the number of chloroplasts present per cell. Experiments with the DNA fluorochrome Hoechst dye 33258 (bisbenzimide) demonstrate that plastids isolated from all phases of cell growth each possess a ring-shaped nucleoid containing detectable DNA. Olisthodiscus chloroplast DNA showed no sequence mismatch when thermal denaturation profiles of reassociated chloroplast DNA were examined, thus all plastome copies are essentially identical. Finally, reassociation studies demonstrated that no foldback (short inverted repeat) sequences were present in the plastid genome although significant hairpin loop structures were observed in control nuclear DNA samples.  相似文献   

16.
Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.  相似文献   

17.
J. V. Possingham  W. Saurer 《Planta》1969,86(2):186-194
Summary The amounts of chlorophyll and nitrogen and the numbers of cells per unit area change as the green leaves of spinach plants grow and increase in size in the light. The changes in the numbers of chloroplasts per cell were measured by a new method. A 5-fold increase in the numbers of chloroplasts per cell took place in both palisade and mesophyll cells over a growing period of 10 days during which time the area of the leaves increased from 1 to 50 cm2. Proplastids were not present in the young green leaves but electron-microscope and phase-contrast observations showed the presence of grana-containing chloroplasts, many of which appeared to be undergoing division by constriction. It is suggested that the large increase in chloroplast numbers as leaf cells grow and expand in the light is from the division of differentiated chloroplasts containing grana.  相似文献   

18.
Summary. To understand the regulatory mechanisms of chloroplast proliferation, chloroplast replication was studied in cultured leaf disks cut from plants of 25 species. In leaf disks from Brassica rapa var. perviridis, the number of chloroplasts per cell increased remarkably in culture. We examined chloroplast replication in this plant in vivo and in culture media with and without benzyladenine, a cytokinin. In whole plants, leaf cells undergo two phases from leaf emergence to full expansion: an early proliferative stage, in which mitosis occurs, and a differentiational stage after mitosis has diminished. During the proliferative stage, chloroplast replication keeps pace with cell division. In the differentiational phase, cell division ceases but chloroplast replication continues for two or three more cycles, with the number of chloroplasts per cell reaching about 60. In the leaf disks, the number of chloroplasts per cell increased from about 18 to 300 without benzyladenine, and to over 600 with benzyladenine, indicating that this cytokinin enhances chloroplast replication in cultured tissue. We also studied changes in ploidy and cell volume between in vivo cells and cells grown in culture with and without benzyladenine. Ploidy and cell volume increased in a manner very similar to that of the number of chloroplasts, suggesting a relationship between these phenomena.Correspondence and reprints: Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.  相似文献   

19.
20.
The effect of benzyladenine (BA) on the diurnal changes in DNAand Chl contents per chloroplast and chloroplast replicationin primary leaves of bean plants (Phaseolus vulgaris L.) grownunder a 16 h light/8 h dark cycle was studied. Experiments weremade on primary leaves in the early expansion phase, where celldivision had been completed but chloroplasts were replicating.In untreated controls, chloroplast number, Chl content and freshweight per leaf showed daily periodic changes. Chl content perchloroplast increased in the light period every day, and freshweight per leaf increased most rapidly in the early dark period.Chloroplast number per leaf increased rapidly in the early darkperiod on day 9, though the increase began a little earlierand was less sharp on days 8 and 10. During these periods, DNAcontent per chloroplast was decreasing due to chloroplast divisionas chloroplast DNA (ctDNA) per leaf remained unchanged throughoutthe experimental period. BA induced increases in Chi contentper chloroplast, ctDNA content and fresh weight per leaf within6 h of its application, regardless of whether it was appliedat or 10 h after the beginning of the light period. Applicationof BA at 10 h in the light period shifted the start of chloroplastreplication by 6 h compared to that in untreated controls. However,when BA was applied at the beginning of illumination, the startof chloroplast replication showed the same relative change intime as above. 5-Fluorodeoxyuridine (5-FdU) promptly preventedBA-induced increase in Chl content and chloroplast number perleaf as well as ctDNA content per leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号