共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequences around kethoxal-reactive guanine residues of 23S RNA in 50S ribosomal subunits have been determined. By use of the diagonal paper electrophoresis method )Noller, H.F. (1974), Biochemistry 13, 4694-4703), 41 ribonuclease T1 oligonucleotides, originating from about 25 sites, were identified and sequenced. These sites are single stranded and accessible in free 50S subunits, and are thus potential sites for interaction with functional ligands during protein synthesis. Examination of these sequences for potential intermolecular base-pairing reveals the following: (1) There are 19 possible complementary combinations between exposed sequences in 16S and 23S RNA containing more than 4 base pairs: 15 containing 5 base pairs and 4 containing 6 base pairs. Nine of these complementary combinations contain 16S RNA sequences which we have previously shown to be protected from kethoxall by 50S subunits (Chapman, N.M., and Noller, H.F. (1977), J. Mol. Biol. 109, 131-149). (2) One of the exposed sites in 23S RNA has a sequence which is complementary to the invariant GT psi CR sequence in tRNA. 相似文献
2.
50 S ribosomal subunit derivatives without the 5 S RNA-protein complex obtained either by splitting with EDTA or by reconstitution from the 23 S RNA and proteins have been studied by electron microscopy. Removal of the 5 S RNA-protein complex is shown to affect neither the overall morphology of the larger ribosomal subunit nor the mode of its association with the small subunit. 相似文献
3.
The structure of 50 S E. coli ribosomal subunits was studied by electron microscopy as these particles were gradually depleted of proteins by incubation with 0.5 to 6.0 m LiCl. Changes observed in the structure of the depleted subunits were correlated with the location of the deleted ribosomal proteins on the control 50 S particle. These changes were particularly striking in the "crown" region, the site of a considerable number of the proteins necessary for the biological activity of the 50 S subunit. Protein L 16, the first to be removed by the LiCl treatment, was found to be essential for the structural integrity of the large subunit through interactions with ribosomal proteins residing in the left-hand side crest and the interface. Based on electron microscopic evidence, a scheme was proposed for the structural changes accompanying the stepwise unfolding of the 50 S E. coli subunit by LiCl. 相似文献
4.
Binding of Escherichia coli ribosomal proteins to 23S RNA under reconstitution conditions for the 50S subunit. 下载免费PDF全文
The RNA binding capacity of 50S proteins from E. coli ribosomes has been tested under improved conditions; purified proteins active in reconstitution assays were used, and the binding was studied under the conditions of the total reconstitution procedure for the 50S subunit. The results are: 1) Interaction of 23S RNA was found with 17 proteins, namely L1, L2, L3, L4, L7/L12, L9, L10, L11, L15, L16, L17, L18, L20, L22, L23, L24 and L29. 2) The proteins L1, L2, L3, L4, L9, L23 and L24 bound to 23S RNA at a level of about one copy per RNA molecule, whereas L20 could bind more than one copy (no saturation was observed at 1.8 copies per 23S RNA), and the other proteins bound 0.2--0.6 copies per RNA. 3) L1, L3, L7/L12 showed a slight binding to 16S RNA, L26 (identical with S20) strong binding to 16S RNA. 4) The binding of L2, L7/L12, L10, L11, L15, L16 and L18 was preparation sensitive, i.e. the binding ability changed notably from preparation to preparation. 5) All proteins bound equally well to 23S RNA in presence of 4 and 20 mM Mg2+, respectively, except L2, L3, L4, L7/L12, L9, L10, L15, L16 and L18, which bound less strongly at 20 mM than at 4 mM Mg2+. 相似文献
5.
6.
Each of the 50 S ribosomal subunit proteins of Escherichia coli was tested independently in two laboratories for its ability to bind specifically to 23 S RNA. Four new RNA-binding proteins, L1, L3, L4 and L13 were identified in this way. Consistent with earlier work, proteins L2, L6, L16, L20, L23 and L24 were found to interact directly and independently with 23 S RNA as well. No binding of L17 was detected, however, contrary to previous reports, and the results for L19 were variable. The molar ratio of protein and RNA in each complex was measured at saturation. Significant differences in binding stoichiometry were noted among the various proteins. In addition, saturation levels were found to be influenced by the state of both the RNA and the proteins. 相似文献
7.
Secondary structure of total protein and 23S RNA in 50S ribosomal subunits and in the isolated state
Optical and sedimentational studies of isolated 23S RNA, total proteins and some RNP-complexes of the 50S subunits were carried out. It is shown that the secondary structure content of 23S RNA in the ribosome is lower than in the isolated state. Ribosomal proteins stabilize the 23S RNA structure and make it more compact. At the same time they cause some unwinding effect on the secondary structure of the 23S RNA and possibly fix some segments of the 23S RNA in the conformation necessary for its function. In turn, the 23S RNA increased somewhat the level of the total ordered secondary structure in the ribosomal proteins. There was no considerable change of the ratio between the alpha- and beta-structures in the proteins. 相似文献
8.
9.
10.
Only two sites in 5 S RNA react with Kethoxal in 50 S ribosomal subunits. These two sites, G13 and G41, have previously been found to be accessible in free 5 S RNA. Nucleotide sequences which have been suggested as possible binding sites for the T-ψ-C-G loop of tRNA are not accessible. 相似文献
11.
12.
13.
A. López-Rivas J. A. Pintor-Toro F. Hernández E. Palacián 《Molecular biology reports》1980,6(4):209-212
The 50S subunits ofEscherichia coli ribosomes were modified with the tryptophan reagentN-bromosuccinimide, and the sulfhydryl groups, the modification of which is accompanied by stimulation of polypeptide synthesis (López-Rivas, A. et al. (1978) Eur. J. Biochem. 92, 121), were regenerated by incubation with simple thiols. This treatment inactivates poly(U)-dependent polyphenylalanine synthesis, peptidyl transferase and elongation factor G-dependent GTPase. Incubation with proteins from untreated 70S ribosomes produces partial reactivation of polyphenylalanine synthesis and GTPase activity. Modification is accompanied by loss of 4–5 tryptophan residues per subunit.Abbreviation SucNBr
N-bromosuccinimide 相似文献
14.
Internal loops play an important role in structure and folding of RNA and in recognition of RNA by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5' 1009CUAAG1013 3'/3' 1168GAAGC1164 5' and 5' 998CUAAG1002 3'/3' 1157GAAGC1153 5' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex 5' 1GGCUAAGAC9 3'/3' 18CCGAAGCUG10 5'. The internal loop forms a different structure in solution and in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson-Crick UA pair. 相似文献
15.
Contacts between the growing peptide chain and the 23S RNA in the 50S ribosomal subunit. 总被引:1,自引:3,他引:1 下载免费PDF全文
Peptides of defined length carrying a diazirine photoaffinity label attached either to the alpha-NH2 group of the N-terminal methionine residue, or to the epsilon-NH2 group of an immediately adjacent lysine residue, were prepared in situ on Escherichia coli ribosomes in the presence of a synthetic mRNA analogue. Peptide growth was stopped simply by withholding the aminoacyl-tRNA cognate to an appropriate downstream codon. After photo-activation at 350 nm the sites of cross-linking to ribosomal RNA were determined by our standard procedures; the C-terminal amino acid of each peptide was labelled with tritium, in order to confirm whether the individual cross-linked complexes contained the expected 'full-length' peptide, as opposed to shorter products. The shortest peptides became cross-linked to sites within the 'peptidyl transferase ring' of the 23S RNA, namely to positions 2062, 2506, 2585 and 2609. However, already when the peptide was three or four residues long, a new cross-link was observed several hundred nucleotides away in another secondary structural domain; this site, at position 1781, lies within one of several RNA regions which have been implicated in other studies as being located close to the peptidyl transferase ring. Further application of this approach, combined with model-building studies, should enable the path of the nascent peptide through the large ribosomal subunit to be definitively mapped. 相似文献
16.
17.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation. 相似文献
18.
19.
The effects of ribosomal proteins L18, L25 and L5 on the conformation of 5S RNA have been studied by circular dichroism and temperature dependent ultraviolet absorbance. The circular dichroism spectrum of native 5S RNA is characterized in the near ultraviolet by a large positive band at 267 nm and a small negative band at 298 nm. The greatest perturbation in the spectrum was produced by protein L18 which induced a 20% increase in the 267 nm band and no change in the 298 nm band. By contrast, protein L25 caused a small decrease in both bands. No effect was observed with protein L5. Simultaneous binding of proteins L18 and L25 resulted in CD changes equivalent to the sum of their independent effects. The UV absorbance thermal denaturation profile of the 5S RNA L18 complex lacked the pre-melting behavior characteristic of 5S RNA. Protein L25 had no effect on the 5S RNA melting profile. We concluded that protein L18 increases the secondary, and possible the tertiary structure of 5S RNA, and exerts a minor stabilizing effect on its conformation while protein L25 causes a small decrease in 5S RNA secondary structure. The implications of these findings for ribosome assembly and function are discussed. 相似文献
20.
George Harauz Marina Stoeffler-Meilicke Marin van Heel 《Journal of molecular evolution》1987,26(4):347-357
Summary Multivariate statistical analysis and classification techniques are powerful tools in sorting noisy electron micrographs of single particles according to their principal features, enabling one to form average images with an enhanced signal-to-noise ratio and a better reproducible resolution. We apply this methodology here to determining the characteristic views of the large (50S) ribosomal subunits from the eubacteriumEscherichia coli and the archaebacteriaMethanococcus vannielii, Sulfolobus solfataricus, andHalobacterium marismortui. Average images were obtained of the subunit in the common crown and kidney projections, but views of the particle in orientations intermediate between these two extremes were also elucidated for all species. These averages show reproducible detail of up to 2.0 nm resolution, thus enabling the visualization and interspecies comparison of many structural features as a first step toward comparing the actual three-dimensional structures. Our results disprove evolutionary lineages recently postulated on the basis of electron microscopical images of ribosomal subunits. 相似文献