首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
Plants are naturally colonized by many fungal species that produce effects ranging from beneficial to pathogenic. However, how many of these fungi are linked with a single host plant has not been determined. Furthermore, the composition of plant-associated fungal communities has not been rigorously determined. We investigated these essential issues by employing the perennial wetland reed Phragmites australis as a model. DNA extracted from roots, rhizomes, stems, and leaves was used for amplification and cloning of internal transcribed spacer rRNA gene fragments originating from reed-associated fungi. A total of 1,991 clones from 15 clone libraries were differentiated by restriction fragment length polymorphism analyses into 345 operational taxonomical units (OTUs). Nonparametric estimators for total richness (Chao1 and ACE) and also a parametric log normal model predicted a total of about 750 OTUs if the libraries were infinite. Sixty-two percent of the OTUs sequenced were novel at a threshold of 3%. Several of these OTUs represented undocumented fungal species, which also included higher taxonomic levels. In spite of the high diversity of the OTUs, the mycofloras of vegetative organs were dominated by just a few typical fungi, which suggested that competition and niche differentiation influence the composition of plant-associated fungal communities. This suggestion was independently supported by the results of nested PCR assays specifically monitoring two OTUs over 3 years, which revealed significant preferences for host habitat and host organ.  相似文献   

2.
Bark and ambrosia beetles (Curculionidae: Scolytinae) are known for their symbioses with fungi and play a key role in the dispersal of phytopathogens. The scolytine community of eight pine stands along a latitudinal gradient in the UK was surveyed and beetle-associated fungal communities (mycobiota) were assessed using ITS2 metabarcoding (304 specimens, 12 species). Distribution patterns among 2,257 detected fungal Operational Taxonomic Units (OTUs) revealed that beetle species identity was an important predictor of mycobiotic richness and composition, while the effects of environmental and spatial variables were negligible. Network-based specificity analysis suggested that a relatively small subset of OTUs (75 in total) exhibit an affinity for a subset of beetle species and that these include many Microascales and Saccharomycetes. Notably though, of the OTUs belonging to the family Ophiostomataceae, relatively few display host specificity. Our results add to the complex picture of host-associated fungal communities and suggest that host range limits are unlikely to restrict the spread of economically important phytopathogens.  相似文献   

3.
Interactions between plants and root‐associated fungi can affect the assembly, diversity, and relative abundances of tropical plant species. Host–symbiont compatibility and some degree of host specificity are prerequisites for these processes to occur, and these prerequisites may vary with host abundance. However, direct assessments of whether specificity of root‐associated fungi varies with host abundance are lacking. Here, in a diverse tropical forest in Los Tuxtlas, Mexico, we couple DNA metabarcoding with a sampling design that controls for host phylogeny, host age, and habitat variation, to characterize fungal communities associated with the roots of three confamilial pairs of host species that exhibit contrasting (high and low) relative abundances. We uncovered a functionally and phylogenetically diverse fungal community composed of 1,038 OTUs (operational taxonomic units with 97% genetic similarity), only 14 of which exhibited host specificity. Host species was a significant predictor of fungal community composition only for the subset of OTUs composed of putatively pathogenic fungi. We found no significant difference in the number of specialists associating with common versus rare trees, but we found that host abundance was negatively correlated with the diversity of root fungal communities. This latter result was significant for symbiotrophs (mostly arbuscular mycorrhizal fungi) and, to a lesser extent, for pathotrophs (mostly plant pathogens). Thus, root fungal communities differ between common and rare trees, which may impact the strength of conspecific negative density dependence. Further studies from other tropical sites and host lineages are warranted, given the role of root‐associated fungi in biodiversity maintenance.  相似文献   

4.
The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils.  相似文献   

5.
Many species of fungi are closely allied with bark beetles, including many tree pathogens, but their species richness and patterns of distribution remain largely unknown. We established a protocol for metabarcoding of fungal communities directly from total genomic DNA extracted from individual beetles, showing that the ITS3/4 primer pair selectively amplifies the fungal ITS. Using three specimens of bark beetle from different species, we assess the fungal diversity associated with these specimens and the repeatability of these estimates in PCRs conducted with different primer tags. The combined replicates produced 727 fungal Operational Taxonomic Units (OTUs) for the specimen of Hylastes ater, 435 OTUs for Tomicus piniperda, and 294 OTUs for Trypodendron lineatum, while individual PCR reactions produced on average only 229, 54, and 31 OTUs for the three specimens, respectively. Yet, communities from PCR replicates were very similar in pairwise comparisons, in particular when considering species abundance, but differed greatly among the three beetle specimens. Different primer tags or the inclusion of amplicons in separate libraries did not impact the species composition. The ITS2 sequences were identified with the Lowest Common Ancestor approach and correspond to diverse lineages of fungi, including Ophiostomaceae and Leotiomycetes widely found to be tree pathogens. We conclude that Illumina MiSeq metabarcoding reliably captures fungal diversity associated with bark beetles, although numerous PCR replicates are recommended for an exhaustive sample. Direct PCR from beetle DNA extractions provides a rapid method for future surveys of fungal species diversity and their associations with bark beetles and environmental variables.  相似文献   

6.
Biodiversity and biogeography of leaf-inhabiting endophytic fungi have not been resolved yet. This is because host specificity, life cycles and species concepts, in this heterogeneous ecological guild of plant-associated microfungi, are far from being understood. Even though it is known that culture-based collection techniques are often biased, this has been the method of choice for studying fungal endophytes. Isolation of fungal endophytes only through culture-based methods could potentially mask slow growing species as well as species with low prevalence, preventing the capture of the communities’ real diversity and composition. This bias can be partially resolved by the use of cultivation-independent approaches such as direct sequencing of plant tissue by next generation techniques. Irrespective of the chosen sampling method, an efficient analysis of community ecology is urgently needed in order to evaluate the driving forces acting on fungal endophytic communities. In the present study, endophytic ascomyceteous fungi from three different plant genera (Vasconcellea microcarpa, Tillandsia spp., and Hevea brasiliensis) distributed in Peru, were isolated through culture-based sampling techniques and sequenced for their ITS rDNA region. These data sets were used to assess host preferences and biogeographic patterns of endophytic assemblages. This study showed that the effect of the host’s genetic background (identity) has a significant effect on the composition of the fungal endophytic community. In other words, the composition of the fungal endophytic community was significantly related to their host’s taxonomic identity. However, this was not true for all endophytic groups, since we found some endophytic groups (e.g. Xylariales and Pleosporales) occurring in more than one host genus. Findings from this study promote the formulation of hypotheses related to the effect of altitudinal changes on the endophytic communities along the Eastern Andean slopes. These hypotheses and perspectives for fungal biodiversity research and conservation in Peru are addressed and discussed.  相似文献   

7.
Symbiotic associations between plants and arbuscular mycorrhizal (AM) fungi are ubiquitous in many herbaceous plant communities and can have large effects on these communities and ecosystem processes. The extent of species-specificity between these plant and fungal symbionts in nature is poorly known, yet reciprocal effects of the composition of plant and soil microbe communities is an important assumption of recent theoretical models of plant community structure. In grassland ecosystems, host plant species may have an important role in determining development and sporulation of AM fungi and patterns of fungal species composition and diversity. In this study, the effects of five different host plant species [Poa pratensis L., Sporobolus heterolepis (A. Gray) A. Gray, Panicum virgatum L., Baptisia bracteata Muhl. ex Ell., Solidago missouriensis Nutt.] on spore communities of AM fungi in tallgrass prairie were examined. Spore abundances and species composition of fungal communities of soil samples collected from patches within tallgrass prairie were significantly influenced by the host plant species that dominated the patch. The AM fungal spore community associated with B. bracteata showed the highest species diversity and the fungi associated with Pa. virgatum showed the lowest diversity. Results from sorghum trap cultures using soil collected from under different host plant species showed differential sporulations of AM fungal species. In addition, a greenhouse study was conducted in which different host plant species were grown in similar tallgrass prairie soil. After 4 months of growth, AM fungal species composition was significantly different beneath each host species. These results strongly suggest that AM fungi show some degree of host-specificity and are not randomly distributed in tallgrass prairie. The demonstration that host plant species composition influences AM fungal species composition provides support for current feedback models predicting strong regulatory effects of soil communities on plant community structure. Differential responses of AM fungi to host plant species may also play an important role in the regulation of species composition and diversity in AM fungal communities. Received: 29 January 1999 / Accepted: 20 October 1999  相似文献   

8.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

9.
The diversity, composition, and host recurrence of endophytic fungi in the Xylariaceae were compared in subtropical (ST), cool temperate (CT), and subboreal forests (SB) in Japan based on the 28S ribosomal DNA sequences from fungal isolates. A total of 610 isolates were obtained from the leaves of 167 tree species in three sites, which were classified into 42 operational taxonomic units (OTUs) at the 99 % similarity level of the 28S rDNA sequence. ST, CT, and SB yielded 31, 13, and three OTUs, respectively. The OTU richness, diversity, and evenness of fungal communities were in the order: ST > CT > SB. The 42 OTUs were assigned to nine genera in the Xylariaceae: Xylaria, Annulohypoxylon, Anthostomella, Biscogniauxia, Nemania, Hypoxylon, Muscodor, Daldinia, and Rosellinia. Xylarioid isolates in the subfamily Xylarioideae outnumbered Hypoxyloid isolates in the subfamily Hypoxyloideae in ST and CT, whereas the opposite was found in SB. Sørensen’s quotient of similarity was generally low between the three sites. Host recurrence of fungal OTUs was evaluated with the degree of specialization of interaction network between xylariaceous endophytes and plant species and compared between the three sites. We found that the networks in the three sites showed a significantly higher degree of specialization than simulated networks, where partners were associated randomly. Permutational multivariate analyses of variance indicated that plant family and leaf trait significantly affected the OTU composition in ST, which can account for the specialization of interaction network and host recurrence of xylariaceous endophytes.  相似文献   

10.
Five Cecropia tree species occupied by four Azteca ant species from Costa Rica and French Guiana were investigated to assess the diversity and host specificity of chaetothyrialean fungal symbionts. The ITS rDNA region of the symbiotic fungi was sequenced either from pure culture isolation, or from environmental samples obtained from ant colonies nesting in hollow stems of the Cecropia host plants. The investigation revealed six closely related OTUs of Chaetothyriales. Neither the four Azteca species nor the six fungal OTUs were associated with specific Cecropia species. In contrast, ants and fungi showed an association. Azteca alfari was associated with a particular OTU, and often contained only one. Azteca coeruleipennis, Azteca constructor and Azteca xanthochroa were associated with a different set of OTUs and often had multiple OTUs within colonies. Possible reasons for these differences and the role of the fungi for the Azteca-Cecropia symbiosis are discussed.  相似文献   

11.
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial–fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.  相似文献   

12.
13.
Fungal communities associated with plant tissues were compared between two bryophyte species dominating decaying logs (Scapania bolanderi and Pleurozium schreberi), and roots of spruce seedlings growing on the bryophytes and in the ground soil, to evaluate the contribution of fungal communities to seedling regeneration. Using high-throughput DNA sequencing, a total of 1233 fungal operational taxonomic units (OTUs) were detected. Saprotrophic Ascomycota were dominant in bryophytes, whereas ectomycorrhizal (ECM) Basidiomycota were dominant in spruce roots. Fungal communities were significantly different between the two bryophyte species. In addition, fungal communities of spruce seedlings were significantly affected by the substrates on which they were growing. Some ECM fungi were detected from both of the bryophytes and the spruce seedlings growing on them; however, the dominant OTU identities differed between the two bryophyte systems. The possible effects of functional differences between dominant fungal OTUs on spruce seedling regeneration are discussed.  相似文献   

14.
Revealing the relationship between plants and root-associated fungi is very important in understanding diversity maintenance and community assembly in ecosystems. However, the community assembly of root-associated fungi of focal plant species along a subtropical plant species diversity gradient is less documented. Here, we examined root-associated fungal communities associated with five ectomycorrhizal (EM) plant species (Betula luminifera, Castanea henryi, Castanopsis fargesii, C. sclerophylla, and Quercus serrate) in a Chinese subtropical woody plant species diversity (1, 2, 4, 8, 16 and 24 species) experiment, using paired-end Illumina MiSeq sequencing of the ITS2 region. In total, we detected 1933 root-associated fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. Plant identity had a significant effect on total and saprotrophic fungal OTU richness, but plant species diversity level had a significant effect on saprotrophic and pathogenic fungal OTU richness. The community composition of total, saprotrophic and EM fungi was structured by plant identity and plant species diversity level. However, the community composition of pathogenic fungi was only shaped by plant identity. This study highlights that plant identity has a stronger effect on the root-associated fungal community than plant species diversity level in a diverse subtropical forest ecosystem.  相似文献   

15.
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.  相似文献   

16.
This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.  相似文献   

17.
Host identity is among the most important factors in structuring ectomycorrhizal (ECM) fungal communities. Both host–fungal coevolution and host shifts can account for the observed host effect, but their relative significance in ECM fungal communities is not well understood. To investigate these two host-related mechanisms, we used relict forests of Pseudotsuga japonica, which is an endangered endemic species in Japan. As with other Asian Pseudotsuga species, P. japonica has been isolated from North American Pseudotsuga spp. since the Oligocene and has evolved independently as a warm-temperate species. We collected 100 soil samples from four major localities in which P. japonica was mixed with other conifers and broadleaf trees. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM fungi and host species. While 136 ECM fungal species were identified in total, their communities were significantly different between host groups, confirming the existence of the host effect on ECM fungal communities. None of the 68 ECM fungal species found on P. japonica belonged to Pseudotsuga-specific lineages (e.g., Rhizopogon and Suillus subgroups) that are common in North America. Most of ECM fungi on P. japonica were shared with other host fungi or phylogenetically close to known ECM fungi on other hosts in Asia. These results suggest that after migrating, Pseudotsuga-specific fungal lineages may have become extinct in small isolated populations in Japan. Instead, most of the ECM fungal symbionts on P. japonica likely originated from host shifts in the region.  相似文献   

18.
Marine fungi are severely understudied in the polar regions. We used molecularly identified cultures to study fungi inhabiting 50 intertidal and sea-floor logs along the North Norwegian coast. The aim was to explore the taxonomic and ecological diversity and to examine factors shaping the marine wood-inhabiting fungal communities. The 577 pure cultures analyzed clustered into 147 operational taxonomic units (OTUs) based on 97 % ITS sequence similarity. Ascomycota dominated, but OTUs belonging to Basidiomycota, Mucoromycotina and Chytridiomycota were also isolated. Nine OTUs could not be assigned to any fungal phylum. Almost half of the OTUs were considered non-marine. The western and eastern part of the Norwegian Barents Sea coast hosted different communities. Geography, substratum and site level variables contributed to shaping these communities. We characterized a previously overlooked fungal community in a poorly studied area, discovered high diversity and report many taxa for the first time from the marine environment.  相似文献   

19.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

20.
Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号