首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goal and Scope This study estimates the life cycle inventory (LCI) of the electricity system in the United States, including the 10 NERC (North American Electric Reliability Council) regions, Alaska, Hawaii, off-grid non-utility plants and the US average figures. The greenhouse gas emissions associated with the United States electricity system are also estimated. Methods The fuel mix of the electricity system based on year 2000 data is used. The environmental burdens associated with raw material extraction, petroleum oil production and transportation for petroleum oil and natural gas to power plants are adopted from the DEAMTM LCA database. Coal transportation from a mining site to a power plant is specified with the data from the Energy Information Administration (EIA), which includes the mode of transportation as well as the distance traveled. The gate-to-gate environmental burdens associated with generating electricity from a fossil-fired power plant are obtained from the DEAMTM LCA database and the eGRID model developed by the United States Environmental Protection Agency. For nuclear power plants and hydroelectric power plants, the data from the DEAMTM LCA database are used.Results and Discussion Selected environmental profiles of the US electricity system are presented in the paper version, while the on-line version presents the whole LCI data. The overall US electricity system in the year 2000 released about 2,654 Tg CO2 eq. of greenhouse gas emissions based on 100-year global warming potentials with 193 g CO2 eq. MJe–1 as an weighted average emission rate per one MJ electricity generated. Most greenhouse gases are released during combusting fossil fuels, accounting for 78–95% of the total. The greenhouse gas emissions released from coal-fired power plants account for 81% of the total greenhouse gas emissions associated with electricity generation, and natural gas-fired power plants contribute about 16% of the total. The most significant regions for the total greenhouse gas emissions are the SERC (Southeastern Electric Reliability Council) and ECAR (East Central Area Reliability Coordination Agreement) regions, which account for 22% and 21% of the total, respectively. A sensitivity analysis on the generation and consumption based calculations indicates that the environmental profiles of electricity based on consumption are more uncertain than those based on generation unless exchange data from the same year are available because the exchange rates (region to region import and export of electricity) vary significantly from year to year.Conclusions and Outlook Those who are interested in the LCI data of the US electricity system can refer to the on-line version. When the inventory data presented in the on-line version are used in a life cycle assessment study, the distribution and transmission losses should be taken into account, which is about 9.5% of the net generation [1]. The comprehensive technical information presented in this study can be used in estimating the environmental burdens when new information on the regional fuel mix or the upstream processes is available. The exchange rates presented in this study also offer useful information in consequential LCI studies.  相似文献   

2.
The environmental impacts of data centers that provide information and communication technologies (ICTs) services are strongly related to electricity generation. With the increasing use of ICT, many data centers are expected to be built, causing more absolute impacts on the environment. Given that electricity distribution networks are very complex and dynamic systems, an environmental evaluation of future data centers is uncertain. This study proposes a new approach to investigate the consequences of future data center deployment in Canada and optimize this deployment based on the Energy 2020 technoeconomic model in combination with life cycle assessment methodology. The method determines specific electricity sources that will power the future Canadian data centers and computes related environmental impacts based on several indicators. In case‐study scenarios, the largest deployment of data centers leads to the smallest impact per megawatt of data centers for all of the environmental indicators. It is found that an increase in power demand by data centers would lead to a reduction in electricity exports to the United States, driving the United States to generate more electricity to meet its energy demand. Given that electricity generation in the United States is more polluting than in Canada, the deployment of data centers in Canada is indirectly linked to an increase in overall environmental impacts. However, though an optimal solution should be found to mitigate global greenhouse gas emissions, it is not clear whether the environmental burden related to U.S. electricity generation should be attributed to the Canadian data centers.  相似文献   

3.
Under some circumstances, electric vehicles (EVs) can reduce overall environmental impacts by displacing internal combustion engine vehicles (ICEVs) and by enabling more intermittent renewable energy sources (RES) by charging with surplus power in periods of low demand. However, the net effects on greenhouse gas (GHG) emissions of adding EVs into a national or regional electricity system are complex and, for a system with significant RES, are affected by the presence of storage capacity, such as pumped hydro storage (PHS). This article takes the Portuguese electricity system as a specific example, characterized by relatively high capacities of wind generation and PHS. The interactions between EVs and PHS are explored, using life cycle assessment to compare changes in GHG emissions for different scenarios with a fleet replacement model to describe the introduction of EVs. Where there is sufficient storage capacity to ensure that RES capacity is exploited without curtailment, as in Portugal, any additional demand, such as introduction of EVs, must be met by the next marginal technology. Whether this represents an average increase or decrease in GHG emissions depends on the carbon intensity of the marginal generating technology and on the fuel efficiency of the ICEVs displaced by the EVs, so that detailed analysis is needed for any specific energy system, allowing for future technological improvements. A simple way to represent these trade‐offs is proposed as a basis for supporting strategic policies on introduction of EVs.  相似文献   

4.
Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.  相似文献   

5.
The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice.  相似文献   

6.
Life cycle greenhouse gas (LC‐GHG) emissions from electricity generated by a specific resource, such as gas and oil, are commonly reported on a country‐by‐country basis. Estimation of variability in LC‐GHG emissions of individual power plants can, however, be particularly useful to evaluate or identify appropriate environmental policy measures. Here, we developed a regression model to predict LC‐GHG emissions per kilowatt‐hour (kWh) of electricity produced by individual gas‐ and oil‐fired power plants across the world. The regression model uses power plant characteristics as predictors, including capacity, age, fuel type (fuel oil or natural gas), and technology type (single or combined cycle) of the plant. The predictive power of the model was relatively high (R2 = 81% for predictions). Fuel and technology type were identified as the most important predictors. Estimated emission factors ranged from 0.45 to 1.16 kilograms carbon dioxide equivalents per kilowatt‐hour (kg CO2‐eq/kWh) and were clearly different between natural gas combined cycle (0.45 to 0.57 kg CO2‐eq/kWh), natural gas single cycle (0.66 to 0.85 kg CO2‐eq/kWh), oil combined cycle power plants (0.63 to 0.79 kg CO2‐eq/kWh), and oil single cycle (0.94 to 1.16 kg CO2‐eq/kWh). Our results thus indicate that emission data averaged by fuel and technology type can be profitably used to estimate the emissions of individual plants.  相似文献   

7.
The objective of this study is to estimate the specific CO2 emissions related to the electricity consumption in the European primary aluminium production and to compare different choices of system boundaries of its electricity supply. The study covers all European aluminium smelters, except Russia and the Ukraine. The concepts of single power plant supply, contract mix, national mix and European grid mix are compared as alternative choices of system boundaries of the electricity supply. The calculations of the electricity consumption in the electrolysis are based on plant-specific information on technology, production and electricity supply. Detailed fuel and country-specific data on CO2 emissions of the relevant types of electricity generation are used with a ‘from cradle to grave’ perspective. The specific emissions calculated for Europe fall into the range of 6-7 kg CO2/kg Al depending on the choice of system boundaries.  相似文献   

8.
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated “intact” sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.  相似文献   

9.
Economic input‐output life cycle assessment (IO‐LCA) models allow for quick estimation of economy‐wide greenhouse gas (GHG) emissions associated with goods and services. IO‐LCA models are usually built using economic accounts and differ from most process‐based models in their use of economic transactions, rather than physical flows, as the drivers of supply‐chain GHG emissions. GHG emissions estimates associated with input supply chains are influenced by the price paid by consumers when the relative prices between individual consumers are different. We investigate the significance of the allocation of GHG emissions based on monetary versus physical units by carrying out a case study of the U.S. electricity sector. We create parallel monetary and mixed‐unit IO‐LCA models using the 2007 Benchmark Accounts of the U.S. economy and sector specific prices for different end users of electricity. This approach is well suited for electricity generation because electricity consumption contributes a significant share of emissions for most processes, and the range of prices paid by electricity consumers allows us to explore the effects of price on allocation of emissions. We find that, in general, monetary input‐output models assign fewer emissions per kilowatt to electricity used by industrial sectors than to electricity used by households and service sectors, attributable to the relatively higher prices paid by households and service sectors. This fact introduces a challenging question of what is the best basis for allocating the emissions from electricity generation given the different uses of electricity by consumers and the wide variability of electricity pricing.  相似文献   

10.
In order to understand the electricity use of Internet services, it is important to have accurate estimates for the average electricity intensity of transmitting data through the Internet (measured as kilowatt‐hours per gigabyte [kWh/GB]). This study identifies representative estimates for the average electricity intensity of fixed‐line Internet transmission networks over time and suggests criteria for making accurate estimates in the future. Differences in system boundary, assumptions used, and year to which the data apply significantly affect such estimates. Surprisingly, methodology used is not a major source of error, as has been suggested in the past. This article derives criteria to identify accurate estimates over time and provides a new estimate of 0.06 kWh/GB for 2015. By retroactively applying our criteria to existing studies, we were able to determine that the electricity intensity of data transmission (core and fixed‐line access networks) has decreased by half approximately every 2 years since 2000 (for developed countries), a rate of change comparable to that found in the efficiency of computing more generally.  相似文献   

11.
For many companies, the greenhouse gas (GHG) emissions associated with their purchased and consumed electricity form one of the largest contributions to the GHG emissions that result from their activities. Currently, hourly variations in electricity grid emissions are not considered by standard GHG accounting protocols, which apply a national grid emission factor (EF), potentially resulting in erred estimates for the GHG emissions. In this study, a method is developed that calculates GHG emissions based on real‐time data, and it is shown that the use of hourly electricity grid EFs can significantly improve the accuracy of the GHG emissions that are attributed to the purchased and consumed electricity of a company. A model analysis for the electricity delivered to the Spanish grid in 2012 reveals that, for companies operating during the day, GHG emissions calculated by the real‐time method are estimated to be up to 5% higher (and in some special cases up to 9% higher) than the emissions calculated by the conventional method in which a national grid EF is applied, whereas for companies operating during nightly hours, GHG emissions are estimated to be as low as 3% below the GHG emissions determined by the conventional method. A significant error can therefore occur in the organizational carbon footprint (CF) of a company and, consequently, also in the product CF. It is recommended that hourly EFs be developed for other countries and power grids.  相似文献   

12.
A medium-scale (0.77 l) air-cathode, brush-anode microbial fuel cell (MFC) operated in fed-batch mode using xylose (20 mM) generated a maximum power density of 13 +/- 1 W/m(3) (673 +/- 43 mW/m(2)). Xylose was rapidly removed (83.5%) within 8 h of a 60-h cycle, with 42.1% of electrons in intermediates (8.5 +/- 0.2 mM acetate, 5.9 +/- 0.01 mM ethanol, 4.3 +/- 0.1 mM formate, and 1.3 +/- 0.03 mM propionate), 9.1% captured as electricity, 16.1% in the remaining xylose, and 32.7% lost to cell storage, biomass, and other processes. The final Coulombic efficiency was 50%. At a higher initial xylose concentration (54 mM), xylose was again rapidly removed (86.9% within 24 h of a 116-h cycle), intermediates increased in concentration (18.4 +/- 0.4 mM acetate, 7.8 +/- 0.4 mM ethanol and 2.1 +/- 0.2 mM propionate), but power was lower (5.2 +/- 0.4 W/m(3)). Power was increased by operating the reactor in continuous flow mode at a hydraulic retention time of 20 h (20 +/- 1 W/m(3)), with 66 +/- 1% chemical oxygen demand removal. These results demonstrate that electricity generation is sustained over a cycle primarily by stored substrate and intermediates formed by fermentation and that the intermediates produced vary with xylose loading.  相似文献   

13.
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.  相似文献   

14.
A two-chambered microbial fuel cell (MFC) with potassium ferricyanide as its electron acceptor was utilized to degrade excess sewage sludge and to generate electricity. Stable electrical power was produced continuously during operation for 250 h. Total chemical oxygen demand (TCOD) of sludge was reduced by 46.4% when an initial TCOD was 10,850 mg/l. The MFC power output did not significantly depend on process parameters such as substrate concentration, cathode catholyte concentration, and anodic pH. However, the MFC produced power was in close correlation with the soluble chemical oxygen demand (SCOD) of sludge. Furthermore, ultrasonic pretreatment of sludge accelerated organic matter dissolution and, hence, TCOD removal rate in the MFC was increased, but power output was insignificantly enhanced. This study demonstrates that this MFC can generate electricity from sewage sludge over a wide range of process parameters.  相似文献   

15.
煤电一体化开发对锡林郭勒盟环境经济的影响   总被引:2,自引:0,他引:2  
吴迪  代方舟  严岩  刘昕  付晓 《生态学报》2011,31(17):5055-5060
国家“十二五”规划确定将在内蒙古锡林郭勒盟建设国家重点大型煤电基地.煤电一体化开发将大大地推动锡盟的区域经济发展,但也可能会对这一典型草原地区和重要生态屏障地区的生态环境造成不利影响.采用物料平衡法和指数增长模型对2001-2009年锡林郭勒盟SO2排放量与人均GDP做了相关性分析,发现二者关系基本符合环境库兹涅茨曲线,呈较缓和倒U型曲线,拐点在人均GDP35000-40000元,目前已过曲线拐点,SO2排放量缓步下降.对锡盟煤电一体化开发情景下(2012-2020)的SO2排放及人均GDP进行预测,结果显示SO2排放量将随经济发展呈上升趋势,表明煤电一体化开发会使环境库兹涅茨曲线的拐点后延,虽然到2020年SO2排放量仍然没有超出区域大气环境容量,但将接近环境容量极限,会给当地环境带来明显压力;基于以上判断,进而从制度、技术、市场三方面出发,探讨了促进锡盟煤电一体化产业建设与环境保护协调发展的对策.  相似文献   

16.
A hybrid approach combining life cycle assessment and input‐output analysis was used to demonstrate the economic and environmental benefits of current and future improvements in agricultural and industrial technologies for ethanol production in Brazilian biorefineries. In this article, three main scenarios were evaluated: first‐generation ethanol production with the average current technology; the improved current technology; and the integration of improved first‐ and second‐generation ethanol production. For the improved first‐generation scenario, a US$1 million increase in ethanol demand can give rise to US$2.5 million of total economic activity in the Brazilian economy when direct and indirect purchases of inputs are considered. This value is slightly higher than the economic activity (US$1.8 million) for an energy equivalent amount of gasoline. The integration of first‐ and second‐generation technologies significantly reduces the total greenhouse gas emissions of ethanol production: 14.6 versus 86.4 grams of carbon dioxide equivalent per megajoule (g CO2‐eq/MJ) for gasoline. Moreover, emissions of ethanol can be negative (–10.5 g CO2‐eq/MJ) when the system boundary is expanded to account for surplus bioelectricity by displacement of natural gas thermal electricity generation considering electricity produced in first‐generation optimized biorefineries.  相似文献   

17.
Life cycle inventory for electricity generation in China   总被引:6,自引:2,他引:4  
Background, Goal and Scope The objective of this study was to produce detailed a life cycle inventory (LCI) for the provision of 1 kWh of electricity to consumers in China in 2002 in order to identify areas of improvement in the industry. The system boundaries were processes in power stations, and the construction and operation of infrastructure were not included. The scope of this study was the consumption of fossil fuels and the emissions of air pollutants, water pollutants and solid wastes, which are listed as follows: (1) consumption of fossil fuels, including general fuels, such as raw coal, crude oil and natural gas, and the uranium used for nuclear power; (2) emissions of air pollutants from thermal power, hydropower and nuclear power plants; (3) emissions of water pollutants, including general water waste from fuel electric plants and radioactive waste fluid from nuclear power plants; (4) emissions of solid wastes, including fly ash and slag from thermal power plants and radioactive solid wastes from nuclear power plants. Methods Data were collected regarding the amount of fuel, properties of fuel and the technical parameters of the power plants. The emissions of CO2, SO2, NOx, CH4, CO, non-methane volatile organic compound (NMVOC), dust and heavy metals (As, Cd, Cr, Hg, Ni, Pb, V, Zn) from thermal power plants as well as fuel production and distribution were estimated. The emissions of CO2 and CH4 from hydropower plants and radioactive emissions from nuclear power plants were also investigated. Finally, the life cycle inventory for China’s electricity industry was calculated and analyzed. Results Related to 1 kWh of usable electricity in China in 2002, the consumption of coal, oil, gas and enriched uranium were 4.57E-01, 8.88E-03, 7.95E-03 and 9.03E-08 kg; the emissions of CO2, SO2, NOx, CO, CH4, NMVOC, dust, As, Cd, Cr, Hg, Ni, Pb, V, and Zn were 8.77E-01, 8.04E-03, 5.23E-03, 1.25E-03, 2.65E-03, 3.95E-04, 1.63E-02, 1.62E-06, 1.03E-08, 1.37E-07, 7.11E-08, 2.03E-07, 1.42E-06, 2.33E-06, and 1.94E-06 kg; the emissions of waste water, COD, coal fly ash, and slag were 1.31, 6.02E-05, 8.34E-02, and 1.87E-02 kg; and the emissions of inactive gas, halogen and gasoloid, tritium, non-tritium, and radioactive solid waste were 3.74E+01 Bq, 1.61E-01 Bq, 4.22E+01 Bq, 4.06E-02 Bq, and 2.68E-10 m3 respectively. Conclusions The comparison result between the LCI data of China’s electricity industry and that of Japan showed that most emission intensities of China’s electricity industry were higher than that of Japan except for NMVOC. Compared with emission intensities of the electricity industry in Japan, the emission intensities of CO2 and Ni in China were about double; the emission intensities of NOx, Cd, CO, Cr, Hg and SO2 in China were more than 10 times that of Japan; and the emission intensities of CH4, V, Pb, Zn, As and dust were more than 20 times. The reasons for such disparities were also analyzed. Recommendations and Perspectives To get better LCI for the electricity industry in China, it is important to estimate the life cycle emissions during fuel production and transportation for China. Another future improvement could be the development of LCIs for construction and operation of infrastructure such as factory buildings and dams. It would also be important to add the information about land use for hydropower.  相似文献   

18.
A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end-of-life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case.
Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase.
A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement.  相似文献   

19.
Osteoclasts (OCs) play important roles in bone remodelling and contribute to bone loss by increasing bone resorption activity. Excessively activated OCs cause diverse bone disorders including osteoporosis. Isovaleric acid (IVA), also known as 3-methylbutanoic acid is a 5-carbon branched-chain fatty acid (BCFA), which can be generated by bacterial fermentation of a leucine-rich diet. Here, we find that IVA suppresses differentiation of bone marrow-derived macrophages into OCs by RANKL. IVA inhibited the expression of OC-related genes. IVA-induced inhibitory effects on OC generation were attenuated by pertussis toxin but not by H89, suggesting a Gi-coupled receptor-dependent but protein kinase A-independent response. Moreover, IVA stimulates AMPK phosphorylation, and treatment with an AMPK inhibitor blocks IVA-induced inhibition of OC generation. In an ovariectomized mouse model, addition of IVA to the drinking water resulted in significant decrease of body weight gain and inhibited the expression of not only OC-related genes but also fusogenic genes in the bone tissue. IVA exposure also blocked bone destruction and OC generation in the bone tissue of ovariectomized mice. Collectively, the results demonstrate that IVA is a novel bioactive BCFA that inhibits OC differentiation, suggesting that IVA can be considered a useful material to control osteoclast-associated bone disorders, including osteoporosis.  相似文献   

20.
A modeling framework has been developed to examine the spatial and temporal aspects of biomass burning emissions from southern African savanna fires. The complexity of the fire emissions processes is described using a spatially and temporally explicit model that integrates recently published satellite‐driven fuel load amounts, the GBA‐2000 satellite burned area time series and empirically derived parameterizations of combustion completeness and emission factors (EFs). To represent fire behavior characteristics, land cover is classified into grasslands and woodlands using the MODIS percent tree cover product. The combustion completeness is modeled as a function of grass fuel moisture and the EFs as a function of grass fuel moisture in grasslands and fuel mixture in woodlands. Fuel moisture is derived from satellite vegetation index time series. The analysis at the regional scale shows that early burning in grasslands may lead to higher amounts of products of incomplete combustion, despite the lower amounts of fuel consumed, compared with late dry season burning. In contrast, early burning in woodlands results in lower emissions, in both products of complete and incomplete combustion, because less fuel is consumed than in the late dry season when the fuels are drier. Overall, burning in woodlands dominates the regional emission budgets. Emissions estimates for various atmospheric species, many of which are modeled for the first time, are reported. The modeled estimates for 2000 are (in Tg) 296 CO2, 11.7 CO, 0.350 CH4, 0.348 NMHC and 1.1 particulates (<2.5 μm). Especially high is the previously undetermined contribution of oxygenated volatile organic compounds (0.915 Tg). A sensitivity analysis of fixed vs. seasonally variable EFs and combustion completeness demonstrates the importance of accounting for the seasonal variations of these two variables in emissions modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号