首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
Polymer-driven crystallization   总被引:1,自引:0,他引:1  
Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules.  相似文献   

3.
The crystallization facility of the TB Structural Genomics Consortium, one of nine NIH-sponsored structural genomics pilot projects, employs a combinatorial random sampling technique in high-throughput crystallization screening. Although data are still sparse and a comprehensive analysis cannot be performed at this stage, preliminary results appear to validate the random-screening concept. A discussion of statistical crystallization data analysis aims to draw attention to the need for comprehensive and valid sampling protocols. In view of limited overlap in techniques and sampling parameters between the publicly funded high-throughput crystallography initiatives, exchange of information should be encouraged, aiming to effectively integrate data mining efforts into a comprehensive predictive framework for protein crystallization.  相似文献   

4.
RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to synthesize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.  相似文献   

5.
6.
Crystallization has been a bottleneck in the X-ray crystallography of proteins. Although many techniques have been developed to overcome this obstacle, the impurities caused by chemical reactions during crystallization have not been sufficiently considered. Oxidation of proteins, which can lead to poor reproducibility of the crystallization, is a prominent example. Protein oxidization in the crystallization droplet causes inter-molecular disulfide bridge formation, formation of oxidation film, and precipitation of proteins. These changes by oxidation are typically irreversible. The best approach for preventing protein oxidization during crystallization is anaerobic crystallization. Here we review the anaerobic crystallization of proteins, which was originally developed to trap a reaction intermediate of the enzyme in the crystal. We also summarize representative anaerobic crystallizations from our laboratory and the general setup of anaerobic crystallization.  相似文献   

7.
The crystallization of fumarase   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

8.
The application of five water-soluble, halogen-free, alkylammonium-based ionic liquids (ILs) as additives for advanced crystallization of lysozyme was investigated. Their biocompatibility was determined by long-term measurement of the overall mean relative enzyme activities. These were maximally reduced by about 10–15% when up to 200 g IL l−1 was added. Sitting-drop vapor diffusion crystallization experiments revealed that the addition of some of the ILs led to less crystal polymorphism and precipitation was avoided reliably even at larger NaCl concentrations. The addition of ILs tended to result in larger crystals. The kinetics of lysozyme crystallization were significantly enhanced using ILs as crystallization additives, e.g. by a factor of 5.5 when 100 g ethanolammonium formate l−1 was added. ILs with “soft” anions, such as formate or glycolate, were superior to ILs with “hard” anions, like nitrate.  相似文献   

9.
The combinatorial chemistry industry has made major advances in the handling and mixing of small volumes, and in the development of robust liquid-handling systems. In addition, developments have been made in the area of material handling for the high-throughput drug screening and combinatorial chemistry fields. Lastly, improvements in beamline optics at synchrotron sources have enabled the use of flash-frozen micron-sized (10-50 microm) crystals. The combination of these and other recent advances will make high-throughput protein crystallography possible. Further advances in high-throughput methods of protein crystallography will require application of the above developments and the accumulation of success/failure data in a more systematic manner. Major changes in crystallography technology will emerge based on the data collected by first-generation high-throughput systems.  相似文献   

10.
High-throughput molecular biology and crystallography advances have placed an increasing demand on crystallization, the one remaining bottleneck in macromolecular crystallography. This paper describes three experimental approaches, an incomplete factorial crystallization screen, a high-throughput nanoliter crystallization system, and the use of a neural net to predict crystallization conditions via a small sample (approximately 0.1%) of screening results. The use of these technologies has the potential to reduce time and sample requirements. Initial experimental results indicate that the incomplete factorial design detects initial crystallization conditions not previously discovered using commercial screens. This may be due to the ability of the incomplete factorial screen to sample a broader portion of "crystallization space," using a multidimensional set of components, concentrations, and physical conditions. The incomplete factorial screen is complemented by a neural network program used to model crystallization. This capability is used to help predict new crystallization conditions. An automated, nanoliter crystallization system, with a throughput of up to 400 conditions/h in 40-nl droplets (total volume), accommodates microbatch or traditional "sitting-drop" vapor diffusion experiments. The goal of this research is to develop a fully-automated high-throughput crystallization system that integrates incomplete factorial screen and neural net capabilities.  相似文献   

11.
The need for high-resolution structure information on membrane proteins is immediate and growing. Currently, the only reliable way to get it is crystallographically. The rate-limiting step from protein to structure is crystal production. An overview of the current ideas and experimental approaches prevailing in the area of membrane protein crystallization is presented. The long-established surfactant-based method has been reviewed extensively and is not examined in detail here. The focus instead is on the latest methods, all of which exploit the spontaneous self-assembling properties of lipids and detergent as vesicles (vesicle-fusion method), discoidal micelles (bicelle method), and liquid crystals or mesophases (in meso or cubic-phase method). In the belief that a knowledge of the underlying phase science is integral to understanding the molecular basis of these assorted crystallization strategies, the article begins with a brief primer on lipids, mesophases, and phase science, and the related issue of form and function as applied to lipids is addressed. The experimental challenges associated with and the solutions for procuring adequate amounts of homogeneous membrane proteins, or parts thereof, are examined. The cubic-phase method is described from the following perspectives: how it is done in practice, its general applicability and successes to date, and the nature of the mesophases integral to the process. Practical aspects of the method are examined with regard to salt, detergent, and screen solution effects; crystallization at low temperatures; tailoring the cubic phase to suit the target protein; different cubic-phase types; dealing with low-protein samples, colorless proteins, microcrystals, and radiation damage; transport within the cubic phase for drug design, cofactor retention, and phasing; using spectroscopy for quality control; harvesting crystals; and miniaturization and robotization for high-throughput screening. The section ends with a hypothesis for nucleation and growth of membrane protein crystals in meso. Thus far, the bicelle and vesicle-fusion methods have produced crystals of one membrane protein, bacteriorhodopsin. The experimental details of both methods are reviewed and their general applicability in the future is commented on. The three new methods are rationalized by analogy to crystallization in microgravity and with respect to epitaxy. A list of Web resources in the area of membrane protein crystallogenesis is included.  相似文献   

12.
13.
High-throughput structural biology is a focus of a number of academic and pharmaceutical laboratories around the world. The use of X-ray crystallography in these efforts is critically dependent on high-throughput protein crystallization. The application of current protocols yields crystal leads for approximately 30% of the input proteins and well-diffracting crystals for a smaller fraction. Increasing the success rate will require a multidisciplinary approach that must invoke techniques from molecular biology, protein biochemistry, biophysics, artificial intelligence, and automation.  相似文献   

14.
The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.  相似文献   

15.
Three-dimensional crystallization of membrane proteins   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Zhdanov VP  Höök F  Kasemo B 《Proteins》2001,43(4):489-498
We present lattice Monte Carlo simulations of the growth of streptavidin islands at a biotinylated lipid layer. The model employed takes into account attractive anisotropic lateral interactions between streptavidin tetramers. With a minimal set of interactions, we reproduce the formation of rectangular islands experimentally observed at pH > or = 9.0. Specifically, we analyze two scenarios of the island growth. First, if streptavidin is rapidly adsorbed at t = 0 (stepwise coverage change without ongoing adsorption), the average linear island size is found to grow according to the Lifshitz-Slyozov law, R proportional to t(1/3). Second, if the island growth occurs in parallel with streptavidin adsorption limited by diffusion in the solution, the Lifshitz-Slyozov law is also applicable, but only at the late stage, when the streptavidin coverage is appreciable.  相似文献   

18.
19.
Purification and crystallization of avidin   总被引:9,自引:6,他引:3       下载免费PDF全文
An improved purification, including crystallization, of avidin from hen's-egg white is described. The product bound 15.1mug of biotin/mg, corresponding to an equivalent weight of 16200. The amino acid composition showed an integral number of amino acid residues per 16200g, which suggested that each molecule of avidin (mol. wt. approx. 66000) contained four identical subunits.  相似文献   

20.
We report on theoretical and experimental work aimed at a systematic approach to the crystallization of proteins. Successful crystallization depends on the competition between the growth rates for compact three-dimensional structures and long-chain structures leading to an amorphous precipitate. Quasi-elastic light scattering was used to monitor the size and shape distribution of small aggregates in a model system (lysozyme) during the pre-nucleation stage. With the aid of a simple model, the line-width of the scattered light was used to predict whether crystals or an amorphous precipitate would result. Once visible crystals appeared, the lysozyme concentration near the crystal surface was monitored and the kinetic parameters for growth obtained. A peculiar self-limiting phenomenon causes crystals to stop growing after a certain size has been reached. When these terminal size crystals were cleaved, growth occurred at the surface until the original size was approximately restored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号