首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.  相似文献   

2.
A major goal of island biogeography is to understand how island communities are assembled over time. However, we know little about the influence of variable area and ecological opportunity on island biotas over geological timescales. Islands have limited life spans, and it has been posited that insular diversity patterns should rise and fall with an island''s ontogeny. The potential of phylogenies to inform us of island ontogenetic stage remains unclear, as we lack a phylogenetic framework that focuses on islands rather than clades. Here, we present a parsimonious island-centric model that integrates phylogeny and ontogeny into island biogeography and can incorporate a negative feedback of diversity on species origination. This framework allows us to generate predictions about species richness and phylogenies on islands of different ages. We find that peak richness lags behind peak island area, and that endemic species age increases with island age on volcanic islands. When diversity negatively affects rates of immigration and cladogenesis, our model predicts speciation slowdowns on old islands. Importantly, we find that branching times of in situ radiations can be informative of an island''s ontogenetic stage. This novel framework provides a quantitative means of uncovering processes responsible for island biogeography patterns using phylogenies.  相似文献   

3.
Jason R. Ali  Shai Meiri 《Ecography》2019,42(5):989-999
Models for biodiversity growth on the remote oceanic islands assume that in situ cladogenesis is a major contributor. To test this, we compiled occurrence data for 194 terrestrial reptile species on 53 volcanically‐constructed middle‐ to low‐latitude landmasses worldwide. Despite 273 native island‐species records, there are only 8–12 cases of the phenomenon, including just two radiations. Diversification frequencies are largely uncorrelated with island area, age, maximum altitude, and isolation. Furthermore, there is no indication that the presence of non‐sister congeners on an island stymies the process. Diversity on individual oceanic islands therefore results primarily from immigration and anageneis, but this is not a simple matter. Clusters that are difficult to reach (far or challenging to get to) or thrive upon (e.g. Canaries, Galápagos) have relatively few clades (3–8), some of which have many species (6–14), and all host at least one endemic genus. In these settings, diversity grows mainly by intra‐archipelago transfer followed by within‐island anagenetic speciation. In contrast, those island groups that are easier to disperse to (characterized by short distances and conducive transit conditions) and harbour more benign habitats (e.g. Comoros, Lesser Antilles) have been settled by many ancestor‐colonizers (≥ 14), but each clade has few derived species (≤ 4). These archipelagoes lack especially distinctive lineages. Models explaining the assembly and growth of terrestrial biotic suites on the volcanic ocean islands thus need to accommodate these new insights.  相似文献   

4.

Background

Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis.

Methodology/Principal Findings

Using a combination of tools, we test the hypothesis that the distributions of shrew (Crocidura) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.

Conclusions/Significance

We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to island archipelagos.  相似文献   

5.
The origin of the terrestrial biota of Madagascar and, especially, the smaller island chains of the western Indian Ocean is relatively poorly understood. Madagascar represents a mixture of Gondwanan vicariant lineages and more recent colonizers arriving via Cenozoic dispersal, mostly from Africa. Dispersal must explain the biota of the smaller islands such as the Comoros and the chain of Mascarene islands, but relatively few studies have pinpointed the source of colonizers, which may include mainland Africa, Asia, Australasia, and Madagascar. The pantropical hermit spiders (genus Nephilengys) seem to have colonized the Indian Ocean island arc stretching from Comoros through Madagascar and onto Mascarenes, and thus offer one opportunity to reveal biogeographical patterns in the Indian Ocean. We test alternative hypotheses on the colonization route of Nephilengys spiders in the Indian Ocean and simultaneously test the current taxonomical hypothesis using genetic and morphological data. We used mitochondrial (COI) and nuclear (ITS2) markers to examine Nephilengys phylogenetic structure with samples from Africa, southeast Asia, and the Indian Ocean islands of Madagascar, Mayotte, Réunion and Mauritius. We used Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, and calculated genetic distances and fixation indices. Our results suggest an African origin of Madagascar Nephilengys via Cenozoic dispersal, and subsequent colonization of the Mascarene islands from Madagascar. We find strong evidence of gene flow across Madagascar and through the neighboring islands north of it, while phylogenetic trees, haplotype networks, and fixation indices all reveal genetically isolated and divergent lineages on Mauritius and Réunion, consistent with female color morphs. These results, and the discovery of the first males from Réunion and Mauritius, in turn falsify the existing taxonomic hypothesis of a single widespread species, Nephilengys borbonica, throughout the archipelago. Instead, we diagnose three Nephilengys species: Nephilengys livida (Vinson, 1863) from Madagascar and Comoros, N. borbonica (Vinson, 1863) from Réunion, and Nephilengys dodo new species from Mauritius. Nephilengys followed a colonization route to Madagascar from Africa, and on through to the Mascarenes, where it speciated on isolated islands. The related golden orb-weaving spiders, genus Nephila, have followed the same colonization route, but Nephila shows shallower divergencies, implying recent colonization, or a moderate level of gene flow across the archipelago preventing speciation. Unlike their synanthropic congeners, N. borbonica and N. dodo are confined to pristine island forests and their discovery calls for evaluation of their conservation status.  相似文献   

6.
The percentage of single island neo-endemic species (an indicator for evolutionary diversification) was found to be independent of geographic distance to the continent in the case of the Aegean archipelago. It was concluded that speciation is independent of geographic isolation, while evolutionary processes are rather enhanced by habitat heterogeneity. An island's maximum elevation was used as an indicator for habitat heterogeneity. In contrast, we argue that habitat heterogeneity (= habitat diversity, i.e. the richness in different habitats) may be positively related to biotic richness, but a positive effect on speciation is yet to be proven. For any other type of heterogeneity, we propose a precise wording, especially when assessing its effect on speciation processes.Alternatively, we propose that elevation-driven ecological isolation causes the pattern of endemic species on high-elevation islands. Environmental filtering along an elevational gradient differentiates ecosystems, leading to an increase of isolation with elevation. The reason is that comparable ecosystems are much farther apart than is the case for lowland ecosystems. In addition, ecosystems on neighboring islands or on the continent that may be source regions for colonizing species are small in area in high elevations in comparison with low elevation ecosystems. Consequently, an increased speciation rate resulting in a larger percentage of single island endemic species can be expected for higher elevations on islands and high mountains. Support for this elevation-driven ecological isolation hypothesis comes from other islands in the Mediterranean region (e.g. Crete and Corsica), where an increase of the percentage of endemic species with elevation has been observed. Thus, the assessment of (genetic-) isolation should incorporate the distance to similar habitats instead of simple land-to-land connections.  相似文献   

7.
From Darwin''s study of the Galapagos and Wallace''s study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles.  相似文献   

8.
Anagenetic speciation is an important mode of speciation in oceanic islands; one-fourth of the endemic plants are estimated to have been derived via this process. Few studies, however, have critically examined the genetic consequences of anagenesis in comparison with cladogenesis (involved with adaptive radiation). We hypothesize that endemic species originating via anagenetic speciation in a relatively uniform environment should accumulate genetic variation with limited populational differentiation. We undertook a population genetic analysis using nine nuclear microsatellite loci of Acer takesimense, an anagenetically derived species endemic to Ullung Island, Korea, and its continental progenitor A. pseudosieboldianum on the Korean Peninsula. Microsatellite data reveal a clear genetic distinction between the two species. A high F value in the cluster of A. takesimense was found by Bayesian clustering analysis, suggesting a strong episode of genetic drift during colonization and speciation. In comparison with A. pseudosieboldianum, A. takesimense has slightly lower genetic diversity and possesses less than half the number of private and rare alleles. Consistent with predictions, weak geographical genetic structure within the island was found in A. takesimense. These results imply that anagenetic speciation leads to a different pattern of specific and genetic diversity than often seen with cladogenesis.  相似文献   

9.
The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera Nesobasis and Melanesobasis, endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered Garli ‐part maximum likelihood and Mrbayes Bayesian phylogenetic hypotheses for 26 species of Nesobasis and eight species/subspecies of Melanesobasis. Biogeographical patterns were explored using Lagrange and Bayes ‐Lagrange and interpreted through beast relaxed clock dating analyses. We found that Nesobasis and Melanesobasis have radiated throughout Fiji, but are not sister groups. For Nesobasis, while the two largest islands of the archipelago—Viti Levu and Vanua Levu—currently host two distinct species assemblages, they do not represent phylogenetic clades; of the three major groupings each contains some Viti Levu and some Vanua Levu species, suggesting independent colonization events across the archipelago. Our Beast analysis suggests a high level of species diversification around 2–6 Ma. Our ancestral area reconstruction (Rasp ‐Lagrange ) suggests that both dispersal and vicariance events contributed to the evolution of diversity. We thus conclude that the evolutionary history of Nesobasis and Melanesobasis is complex; while inter‐island dispersal followed by speciation (i.e., peripatry) has contributed to diversity, speciation within islands appears to have taken place a number of times as well. This speciation has taken place relatively recently and appears to be driven more by reproductive isolation than by ecological differentiation: while species in Nesobasis are morphologically distinct from one another, they are ecologically very similar, and currently are found to exist sympatrically throughout the islands on which they are distributed. We consider the potential for allopatric speciation within islands, as well as the influence of parasitic endosymbionts, to explain the high rates of speciation in these damselflies.  相似文献   

10.
Mitochondrial DNA sequence data were obtained for eight species of flightless Galapaganus endemic weevils and one winged close relative in order to study their colonization history and modes of diversification in the Galápagos Archipelago. Contrary to most other insular radiations, the phylogeny estimates we recovered for Galapaganus do not follow the progression rule of island biogeography. The penalized likelihood age estimates of colonization of the archipelago exceed the age of the emerged islands and underscore the potential role of now sunken seamounts for the early evolution of Galapaganus . The phylogeny proposes one intra-island origin for Galapaganus endemics, but monophyly tests suggest a larger contribution of in-situ speciation on older islands. Generalist habitat preferences were reconstructed as ancestral while shifts to highland habitats were reconstructed as having evolved independently on different islands. Magnitudes and patterns of diversification rate were found to differ between older and younger islands. Our analyses reveal that the colonization sequence of islands and timing of colonization of Galapaganus could be linked with the geological and volcanic history of the islands in a rather complex scenario. Even though most islands appear to have been colonized soon after their emergence, there are notable deviations from the pattern of sequential colonization expected under the progression rule when considering only the extant emerged islands. Patterns of diversification rate variation on older and younger islands correspond to the volcanic activity or remnants of such activity, while the pattern of independent evolution of restricted habitat preferences in different islands suggests that habitat shifts could also have contributed to species diversity in Galapaganus .  相似文献   

11.
We examine the effects of ecological opportunity and geographic area on rates of species accumulation and morphological evolution following archipelago colonization in day geckos (genus Phelsuma) in the Indian Ocean. Using a newly generated molecular phylogeny for the genus, we present evidence that these geckos likely originated on Madagascar, whereas colonization of three archipelagos in the Indian Ocean, the Seychelles, Mascarene, and Comoros Islands has produced three independent monophyletic radiations. We find that rates of species accumulation are not elevated following colonization but are roughly equivalent on all three isolated archipelagos and on the larger island of Madagascar. However, rates of species accumulation have slowed through time on Madagascar. Rates of morphological evolution are higher in both the Mascarene and Seychelles archipelagos compared to rates on Madagascar. This negative relationship between rate of morphological evolution and island area suggests that ecological opportunity is an important factor in diversification of day gecko species.  相似文献   

12.
Melo M  Warren BH  Jones PJ 《Molecular ecology》2011,20(23):4953-4967
Archipelago-endemic bird radiations are familiar to evolutionary biologists as key illustrations of evolutionary patterns. However, such radiations are in fact rare events. White-eyes (Zosteropidae) are birds with an exceptionally high colonization and speciation potential; they have colonized more islands globally than any other passerine group and include the most species-rich bird genus. The multiplication of white-eye island endemics has been consistently attributed to independent colonizations from the mainland; the white-eyes of the Gulf of Guinea archipelago had been seen as a classic case, spanning as great a breadth of phenotypic diversity as the family worldwide. Contrary to this hypothesis, our molecular phylogenetic analysis places the Gulf of Guinea white-eyes in just two radiations, one grouping all five oceanic island taxa and the other grouping continental island and land-bridge taxa. Numerous 'aberrant' phenotypes (traditionally grouped in the genus Speirops) have evolved independently over a short space of time from nonaberrant (Zosterops) phenotypes; the most phenotypically divergent species have separated as recently as 0.22 Ma. These radiations rival those of Darwin's finches and the Hawaiian honeycreepers in terms of the extent of adaptive radiation per unit time, both in terms of species numbers and in terms of phenotypic diversity. Tempo and patterns of morphological divergence are strongly supportive of an adaptive radiation in the oceanic islands driven by ecological interactions between sympatric white-eyes. Here, very rapid phenotypic evolution mainly affected taxa derived from the youngest wave of colonization, in accordance with the model of asymmetric divergence owing to resource competition in sympatry.  相似文献   

13.
Rapa Island in SE Polynesia hosts a remarkable adaptive radiation of small, flightless weevils in the genus Miocalles. Sixty-seven species are known at present, of which 26 are described as new. One new name, two new combinations, and two new synonyms are established. The paradoxical occurrence of a large adaptive radiation on a small (40 km2), isolated, oceanic island is analysed in its evolutionary and ecological aspects: how did so many species of weevils evolve, and how is such a diversity of weevils maintained? Most of the speciation has taken place on Rapa itself. Two principal methods of intra-island isolation of weevil populations have led to speciation: between high mountain ranges, and between Rapa and its satellite islets. Glacial sea level fluctuations aided in speciation by connecting the satellite islets to Rapa at times, and by the downward extension, and connection of high-altitude cloud forests. Some speciational events may have taken place in 15000–150 000 years. Close relatives of Rapan weevils are known from nearby Marotiri, an almost sunken island, and from the neighbouring Austral archipelago, with which some inter-island speciation has taken place. The weevil species are almost all host-plant specific. There are often several species occupying the same host plant, in which case they may inhabit different parts of it. Some plants with a longer history on Rapa host more weevil species than newer arrivals.  相似文献   

14.
Speciation and phylogeography of Hawaiian terrestrial arthropods   总被引:8,自引:2,他引:6  
The Hawaiian archipelago is arguably the world's finest natural laboratory for the study of evolution and patterns of speciation. Arthropods comprise over 75% of the endemic biota of the Hawaiian Islands and a large proportion belongs to species radiations. We classify patterns of speciation within Hawaiian arthropod lineages into three categories: (i) single representatives of a lineage throughout the islands; (ii) species radiations with either (a) single endemic species on different volcanoes or islands, or (b) multiple species on each volcano or island; and (iii) single widespread species within a radiation of species that exhibits local endemism. A common pattern of phylogeography is that of repeated colonization of new island groups, such that lineages progress down the island chain, with the most ancestral groups (populations or species) on the oldest islands. While great dispersal ability and its subsequent loss are features of many of these taxa, there are a number of mechanisms that underlie diversification. These mechanisms may be genetic, including repeated founder events, hybridization, and sexual selection, or ecological, including shifts in habitat and/or host affiliation. The majority of studies reviewed suggest that natural selection is a primary force of change during the initial diversification of taxa.  相似文献   

15.
Summary. The Indian Ocean Islands are a most interesting region for evolutionary studies of terrestrial organisms and, among insects, the Drosophilidae family occupies a privileged position. The Comoros archipelago was, up to now, the least explored place among all the islands. We present here the results of a collection on one of the four main islands, Mayotte. From 4500 collected flies, 25 species were distinguished. The biology, ecology and biogeography of each species are discussed. Considering the extant known species from all islands, five evolutionary scenarios are proposed, ranging from the invasive, cosmopolitan, man-transported species to endemic species restricted to a single island. Some species raise a puzzling problem: despite having a very narrow and specialised ecological niche, they are broadly distributed on most islands and also on the African mainland.  相似文献   

16.
The tremendous diversity of endemic Hawaiian crickets is thought to have originated primarily through intraisland radiations, in contrast to an interisland mode of diversification in the native Hawaiian Drosophila. The Hawaiian cricket genus Laupala (family Gryllidae) is one of several native genera of flightless crickets found in rain-forest habitat across the Hawaiian archipelago. I examined the phylogenetic relationships among mitochondrial DNA (mtDNA) sequences sampled from 17 species of Laupala, including the 12S ribosomal RNA (rRNA), transfer RNA (RNA)val and 16S rRNA regions. The distribution of mtDNA variants suggests that species within Laupala are endemic to single islands. The phylogenetic estimate produced from both maximum likelihood and maximum parsimony supports the hypothesis that speciation in Laupala occurred mainly within islands. The inferred biogeographical history suggests that diversification in Laupala began on Kauai, the oldest rain-forested Hawaiian island. Subsequently, colonization to younger islands in the archipelago resulted in a radiation of considerable phylogenetic diversity. Phylogenetic patterns in mtDNA are not congruent with prior systematic or taxonomic hypotheses. Hypotheses that may explain the conflict between the phylogenetic patterns of mtDNA variation and the species taxonomy are discussed.  相似文献   

17.
Oceanic islands accumulate endemic species when new colonists diverge from source populations or by in situ diversification of resident island endemics. The relative importance of dispersal versus in situ speciation in generating diversity on islands varies with a number of archipelago characteristics including island size, age, and remoteness. Here, we characterize interisland dispersal and in situ speciation in frogs endemic to the Gulf of Guinea islands. Using mitochondrial sequence and genome‐wide single‐nucleotide polymorphism data, we demonstrate that dispersal proceeded from the younger island (São Tomé) to the older island (Príncipe) indicating that for organisms that disperse overseas on rafts, dispersal between islands may be determined by ocean currents and not island age. We find that dispersal between the islands is not ongoing, resulting in genotypically distinct but phenotypically similar lineages on the two islands. Finally, we demonstrate that in situ diversification on São Tomé Island likely proceeded in allopatry due to the geographic separation of breeding sites, resulting in phenotypically distinct species. We find evidence of hybridization between the species where their ranges are sympatric and the hybrid zone coincides with a transition from agricultural land to primary forest, indicating that anthropogenic development may have facilitated secondary contact between previously allopatric species.  相似文献   

18.
Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.  相似文献   

19.
Glor RE 《Molecular ecology》2011,20(23):4823-4826
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.  相似文献   

20.
Aim Endemism in the flora of the Azores is high (33%) but in other respects, notably the paucity of evolutionary radiations and the widespread distribution of most endemics, the flora differs markedly from the floras of the other Macaronesian archipelagos. We evaluate hypotheses to explain the distinctive patterns observed in the Azorean endemic flora, focusing particularly on comparisons with the Canary Islands. Location Azores archipelago. Methods Data on the distribution and ecology of Azorean endemic flowering plants are reviewed to ascertain the incidence of inter‐island allopatric speciation and adaptive, ecological speciation. These are contrasted with patterns for the Canary Islands. Patterns of endemism in the Azores and Canaries are further investigated in a phylogenetic context in relation to island age. beast was used to analyse a published molecular dataset for Pericallis (Asteraceae) and to investigate the relative ages of Azorean and Canarian lineages. Results There are few examples of inter‐island allopatric speciation in the Azorean flora, despite the considerable distances between islands and sub‐archipelagos. In contrast, inter‐island allopatric speciation has been an important process in the evolution of the Canary Islands flora. Phylogenetic data suggest that Azorean endemic lineages are not necessarily recent in origin. Furthermore, in Pericallis the divergence of the Azorean endemic lineage from its closest relative pre‐dates the radiation of a Canarian herbaceous clade by inter‐island allopatric speciation. Main conclusions The data presented do not support suggestions that hypotheses pertaining to island age, age of endemic lineages and ecological diversity considered individually explain the lack of radiations and the widespread distribution of Azorean endemics. We suggest that palaeoclimatic variation, a factor rarely considered in macroecological studies of island diversity patterns, may be an important factor. Palaeoclimatic data suggest frequent and abrupt transitions between humid and arid conditions in the Canaries during the late Quaternary, and such an unstable climate may have driven the recent diversification of the flora by inter‐island allopatric speciation, a process largely absent from the climatically more stable Azores. Further phylogenetic/phylogeographic analyses are necessary to determine the relative importance of palaeoclimate and other factors in generating the patterns observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号