首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The koenigs-Knorr glycosylation of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(2,3-O-isopropylidene-α-l-rhamnopyranosyl)-α-d-galactopyranose (3) by 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide (10), as well as Helferich glycosylations of 3 by tetra-O-acetyl-α-d-mannopyranosyl and -α-d-glucopyranosyl bromides, proceeded smoothly to give high yields of trisaccharide derivatives (12, 16, and 17). An efficient procedure for the transformation of 12, 16, and 17 into the α-deca-acetates of the respective trisaccharides has been developed. Zemplén de-acetylation then afforded the title trisaccharides in yields of 53, 52, and 62 %, respectively, from 3. A new route to 1,4,6-tri-O-acetyl-2,3-O-carbonyl-α-d-mannopyranose is suggested.  相似文献   

2.
3.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

4.
The two purple-membrane glycolipids O-β-d-glucopyranosyl- and O-β-d-galactopyranosyl-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2, 3-di-O-phytanyl-sn-glycerol were prepared by coupling O-(2,3,4-tri-O-acetyl-α-d-mannopyranosyl)-(1→2)-O-(3,4,6-tri-O-acetyl-α-d-glucopyranosyl)-(1→1)-2, 3-di-O-phytanyl-sn-glycerol (9) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide, respectively, followed by deacetylation. The glycolipid sulfate O-(β-d-glucopyranosyl 3-sulfate)-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2,3-di-O-phytanyl-sn-glycerol was prepared by coupling of 9 with 2,4,6-tri-O-acetyl-3-O-trichloroethyloxycarbonyl-α-d-glucopyranosyl bromide in the presence of Hg(CN)2/HgBr2 followed by selective removal of the 3?-trichloroethyloxycarbonyl group, sulfation of HO-3?, and deacetylation. The suitably protected key-intermediate 9 could be prepared by two distinct approaches.  相似文献   

5.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

6.
Glycosylation of 1,2:5,6-di-O-isopropylidene-α-d-galactofuranose with 2,3-di-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-α-l-rhamnopyranosyl bromide, followed by removal of the protecting groups, gave O-β-d-mannopyranosyl-(1→4)-O-α-l-rhamnopyranosyl-(1→3)-d-galactose, which is the trisaccharide repeating-unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella anatum. The formation of the β-d-mannopyranosyl linkage was achieved by a glucose-mannose conversion via stereoselective reduction of the corresponding oxo-disaccharide.  相似文献   

7.
Methods for the synthesis of 3-O-(α-d-mannopyranosyl)-d-mannose and 2-(4-aminophenyl)ethyl 3-O-(α-d-mannopyranosyl)-α-d-mannopyranoside have been investigated by a number of sequences. Glycosidations with 2,3-di-O-acetyl-4,6-di-O-benzyl-d-mannopyranosyl and 2-O-benzoyl-3,4,6-tri-O-benzyl-d-mannopyranosyl p-toluenesulfonates were found to give better yields than the Helferich modification, the use of a peracylated d-mannopyranosyl halide, or the use of triflyl leaving group. Only the α anomer was obtained. Factors influencing glycosidation reactions are discussed. A mercury(II) complex was used for selective 2-O-acylation of 4,6-di-O-benzyl-α-d-mannopyranosides. A disaccharide—protein conjugate was prepared by the isothiocyanate method.  相似文献   

8.
Maltitol, crystallised from aqueous solution, has m.p. 146.5–147°, [α]d + 106.5° (water), and is orthorhombic with the space group P212121 and Z = 4, and with cell dimensions a = 8.166(5), b = 12.721(9), and c = 13.629(6) Å. The molecule shows a fully extended conformation with no intramolecular hydrogen-bonds. All nine hydroxyl groups are involved in intermolecular hydrogen-bond networks and in bifurcated, finite chains. The d-glucopyranosyl moiety has the 4C1 conformation, and the conformation about the C-5–C-6 bond is gauche-gauche. The d-glucitol residue has the bent [ap, Psc, Psc (APP)] conformation. The empirical formula for the solubility in water is C = 119.1 + 1.204 T + 4.137 × 10?2 T2 ? 7.137 × 10?4 T3 + 7.978 × 10?6 T4. The thermal properties are as follows: ΔHf = 13.5 kcal.mol?1, and Q = ?5.57 kcal.mol?1.  相似文献   

9.
The synthesis of the title disaccharide derivative (1C), corresponding to the Salmonella O-factor 21, is described. Treatment of 2-O-benzyl-4-O-p-nitrobenzoyl-α-paratosyl bromide (5) with p-nitrophenyl 2-O-benzyl-4,6-O-benzylidene-α-d-mannoside in dichloromethane, in the presence of mercuric cyanide, gave the α- and β-linked disaccharide derivatives (6a and 6b) in yields of 34 and 5%, respectively. The disaccharide derivative 10 can react with free amino groups in proteins to produce artificial antigens useful in studies on Salmonella immunology.  相似文献   

10.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

11.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α-l-rhamnopyranoside with tetra-O-benzyl-α-d-galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-l-rhamnopyranoside (6). Compound 2 was converted into 4-O-α-d-galactopyranosyl-l-rhamnose. The reaction of 6 with tetra-O-acetyl-α-d-glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α-d-galactopyranosyl-2-O-β-d-glucopyranosyl-l-rhamnose.  相似文献   

12.
2-Deoxy-β-d-lyxo-hexose (2-deoxy-β-d-galactose, C6H12O5), Mr = 164.16, is monoclinic, P21 with a = 9.811(1), b = 6.953(1), c = 5.315(1) Å, β = 91.58(2)°, V = 362.5(1) Å3, Z = 2, and Dx = 1.504 g.cm?3. The structure was solved by direct methods (MULTAN 79) and refined to R = 0.032 for 800 observed reflections. Each hydroxyl oxygen, acting both as donor and acceptor, is involved in a hydrogen-bonding system, which consists of infinite helical chains around the crystallographic screw axes. Moreover, weak interactions allow the incorporation of the ring-oxygen atoms into an interconnected network.  相似文献   

13.
The crystal structures of (1→3)-α-d-glucan triacetates were studied by X-ray diffraction measurements on fibre diagrams. The oriented films annealed in water at high temperature were of higher crystallinity and occurred as two crystalline polymorphs (GTA I and GTA II) depending on the samples and also the annealing temperature. All reflections in GTA I were indexed with a pseudo-orthorhombic unit cell with a = 1·753, b = 3·018 and c(fibre axis) = 1·205 nm. From the fibre repeat data coupled with the density data and the presence of only the (003) reflection on the meridian, an extended three-fold helical structure was proposed. Although some reflections in GTA II split from the layer lines, the basic unit cell was a monoclinic system with a = 1·685, b = 3·878, c (fibre axis) = 1·210 nm and γ = 112·2°. A similar three-fold structure to GTA I was proposed from the almost identical fibre repeat and the conformational analysis on (1→3)-α-d-glucan. It was concluded that, on acetylation, the d-glucan structure changed from the fully extended two-fold helix to the extended three-fold accompanied by some extent of chain shrinking.  相似文献   

14.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

15.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

16.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) with 1,2-O-isopropylidene-α-D-glucofuranurono-6,3-lactone (2) gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (3). Benzoylation of the hydroxyimino group with benzoyl cyanide in acetonitrile gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-benzoyloxyimino-2-deoxy-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (4). Compound 4 was reduced with borane in tetrahydrofuran, yielding 5-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1,2-O-isopropylidene-α-D-glucofuranose (5), which was isolated as the crystalline N-acetyl derivative (6). After removal of the isopropylidene acetal, the pure, crystalline title compound (10) was obtained.  相似文献   

17.
The crystal structure of methyl 3,4-O-isopropylidene-2,6-di-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-galactopyranoside (1), C38H54O24 · (C4H8O2)0.32 was determined by X-ray diffraction;1 crystallises in space group P21 with a = 12.480(3), b = 8.821(3), c = 21.182(4)Å, β = 98.46(3)°, and Z = 2. The structure was solved by Patterson-search and Fourier-recycling procedures and refined to Rw(R) = 0.048(0.063), using 4348 [3112 with I> 2σ(I)] independent reflections. The β-d-galactosyl rings are slightly distorted and, due to the isopropylidene group, the α-d-galactoside ring is severely distorted. The conformation near the β-(1→6) and β-(1→2) linkages between the pyranoid rings is not significantly affected by the acetyl groups, but the anomeric C-O-C bridge angles have unusual values. The C-6O-6 bond in the β-d-galactosyl group (1→2)-linked to the α-d-galactoside residue has an unusual gauche—trans conformation with respect to C-4 and O-5. The CH3-(C = O)-O-C moieties are planar within 0.01Å, and 32.6% of all unit cells contain a molecule of ethyl acetate.  相似文献   

18.
The preparation of 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranosyl-2-O-benzoyl-4,6-O-benzylidene-α-d-ribo-hexopyranosid-3-ulose (3) from 4,6:4′,6′-di-O-benzylidene-α,α-trehalose (1) via the 2,3,2′-tribenzoate 2 has been improved. Reduction of 3 with sodium borohydride gave 2-O-benzoyl-4,6-O-benzylidene-α-d-allopyranosyl 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranoside (4), which was converted into the methanesulfonate 5 and trifluoromethanesulfonate 6. Displacement of the sulfonic ester group in 6 with lithium azide was very facile and afforded a high yield of 3-azido-2-O-benzoyl-4,6-O-benzylidene-3-deoxy-α-d-glucopyranosyl 2,3-di-O-benzoyl-4,6-O-benzylidene-α-d-glycopyranoside (7), whereas similar displacement in 5 proceeded sluggishly, giving a lower yield of 7 together with an unsaturated disaccharide (8). The azido sugar 7 was converted by conventional reactions into the analogous 2,3,2′-triacetate 9, the corresponding 2,3,2′-triol 10, and deprotected 3-azido-3-deoxy-α-d-glucopyranosyl α-d-glucopyranoside (11). Hydrogenation of 11 over Adams' catalyst furnished crystalline 3-amino-3-deoxy-α,α-trehalose hydrochloride (12), the overall yield from 3 being 35%.  相似文献   

19.
V.u.c.d. spectra recorded for freshly prepared aqueous solutions of (1 → 6)-β)-D-glucan(pustulan) contained a single positive band near 177 nm. This band was similar in position and magnitude to the single positive band observed in the spectrum of (1 → 6)-α-D-glucan (dextran). Pustulan solutions (20 mg/ml) were observed to gel with time at 10 C. Concurrently, a negative band at 190 nm developed in the pustulan v.u.c.d. spectrum followed by a blue shift of both bands with continued aging. Crystalline films of pustulan yield spectra which resembled the blue shifted spectra of aged gels. The time dependent development of the negative band was attributed to pustulan attaining a helical conformation in solution, and the blue shift to aggregation of helices, Na+ and Ca2+ were found to accelerate gelation presumably by decreasing the activity of the aqueous solvent.  相似文献   

20.
On treatment with m sodium methylsulphinylmethanide at 25°, 2-O-(4-O-methyl-α-d-glucopyranosyluronic acid)-d-xylose (1) was rapidly degraded by β-elimination, to form 2-O-(4-deoxy-β-l-threo-hex-4-enopyranosyluronic acid)-d-xylose (2). The kinetics of hydrolysis of 1 and 2 in 0.5m sulphuric acid have been studied. Compound 2 was hydrolysed 70 times faster than 1. Compared with the rate coefficients of other related compounds, 2 was hydrolysed at approximately the same rate as 2-O-(4-O-methyl-α-d-glucopyranosyl)-d-xylose, 3.5 times more slowly than xylobiose, and twice as fast as the xylosidic bond in O-(4-O-methyl-α-d-glucopyranosyluronic acid)-(1→2)-O-β-d-xylopyranosyl-(1→4)-d-xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号