首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
JAK/STAT signalling in vertebrates is activated by multiple cytokines and growth factors. By contrast, the Drosophila genome encodes for only three related JAK/STAT ligands, Upd, Upd2 and Upd3. Identifying the differences between these three ligands will ultimately lead to a greater understanding of this disease-related signalling pathway and its roles in development. Here, we describe the analysis of the least well characterised of the Upd-like ligands, Upd3. We show that in tissue culture-based assays Upd3-GFP is secreted from cells and appears to interact with the extracellular matrix (ECM) in a similar manner to Upd, while still non-autonomously activating JAK/STAT signalling. Quantification of each of the Upd-like ligands in conditioned media has allowed us to determine the activity of equal amounts of each ligand on JAK/STAT ex vivo and reveals that Upd is the most potent ligand in this system. Finally, investigations into the effects of ectopic expression of Upd3 in vivo have confirmed its ability to activate pathway signalling at long-distance.  相似文献   

3.
4.
5.
During Drosophila optic lobe development, proliferation and differentiation must be tightly modulated to reach its normal size for proper functioning. The JAK/STAT pathway plays pleiotropic roles in Drosophila development and in the larval brain, has been shown to inhibit medulla neuroblast formation. In this study, we find that JAK/STAT activity is required for the maintenance and proliferation of the neuroepithelial stem cells in the optic lobe. In loss-of-function JAK/STAT mutant brains, the neuroepithelial cells lose epithelial cell characters and differentiate prematurely while ectopic activation of this pathway is sufficient to induce neuroepithelial overgrowth in the optic lobe. We further show that Notch signaling acts downstream of JAK/STAT to control the maintenance and growth of the optic lobe neuroepithelium. Thus, in addition to its role in suppression of neuroblast formation, the JAK/STAT pathway is necessary and sufficient for optic lobe neuroepithelial growth.  相似文献   

6.
JAK/STAT signaling is localized to the wing hinge, but its function there is not known. Here we show that the Drosophila STAT Stat92E is downstream of Homothorax and is required for hinge development by cell-autonomously regulating hinge-specific factors. Within the hinge, Stat92E activity becomes restricted to gap domain cells that lack Nubbin and Teashirt. While gap domain cells lacking Stat92E have significantly reduced proliferation, increased JAK/STAT signaling there does not expand this domain. Thus, this pathway is necessary but not sufficient for gap domain growth. We show that reduced Wingless (Wg) signaling dominantly inhibits Stat92E activity in the hinge. However, ectopic JAK/STAT signaling does not perturb Wg expression in the hinge. We report negative interactions between Stat92E and the notum factor Araucan, resulting in restriction of JAK/STAT signaling from the notum. In addition, we find that the distal factor Nub represses the ligand unpaired as well as Stat92E activity. These data suggest that distal expansion of JAK/STAT signaling is deleterious to wing blade development. Indeed, mis-expression of Unpaired within the presumptive wing blade causes small, stunted adult wings. We conclude that JAK/STAT signaling is critical for hinge fate specification and growth of the gap domain and that its restriction to the hinge is required for proper wing development.  相似文献   

7.
Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in DROSOPHILA: Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (Tor(GOF)) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.  相似文献   

8.
Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.  相似文献   

9.
10.
In Drosophila, the replacement of spent enterocytes (ECs) relies on division of intestinal stem cells (ISCs) and differentiation of their progeny, the enteroblasts (EBs). Recent studies have revealed a role for JAK/STAT signaling in the modulation of the rate of ISC division in response to environmental challenge. Here, we demonstrate the critical role of the UPD3 cytokine in the JAK/STAT-dependent response to enteric infection. We show that upd3 expression is activated in ECs and in EBs that massively differentiate in response to challenge. We show that the UPD3 cytokine, which is secreted basally and accumulates at the basement membrane, is required for stimulation of JAK/STAT signaling in EBs and visceral muscles (VMs). We further show that stimulation of ISC division requires active JAK/STAT signaling in EBs and VMs, but apparently not in ISCs. Our results suggest that EBs and VMs modulate the rate of the EGFR-dependent ISC division through upd3-dependent production of the EGF ligands Spitz and Vein, respectively. This study therefore supports the notion that the production of the UPD3 cytokine in stem cell progeny (ECs and EBs) stimulates intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment (EBs and VMs).  相似文献   

11.
The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.  相似文献   

12.
Hongbin Wang  Xi Chen  Teng He  Yanna Zhou  Hong Luo 《Genetics》2013,195(4):1291-1306
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.  相似文献   

13.
The mechanism by which Suppressor of Cytokine Signaling-3 (SOCS3) negatively regulates cytokine signaling has been widely investigated using over-expression studies in cell lines and is thought to involve interactions with both the gp130 receptor and JAK1. Here, we compare the endogenous JAK/STAT signaling pathway downstream of Leukemia Inhibitory Factor (LIF) signaling in wild type (WT) Embryonic Stem (ES) cells and in ES cells lacking either the entire Socs3 gene or bearing a truncated form of SOCS3 (SOCS3ΔSB) lacking the C-terminal SOCS box motif (SOCS3ΔSB/ΔSB). In SOCS3ΔSB/ΔSB cells phosphorylated JAK1 accumulated at much higher levels than in WT cells or even cells lacking SOCS3 (SOCS3?/?). In contrast enhanced activation of STAT3 and SHP2 was seen in SOCS3?/? cells. Size exclusion chromatography of cell extracts showed that in unstimulated cells, JAK1 was exclusively associated with receptors but following cytokine stimulation hyperphosphorylated JAK1 (pJAK1) appeared to dissociate from the receptor complex in a manner independent of SOCS3. In WT and SOCS3ΔSB/ΔSB cells SOCS3 was associated with pJAK1. The data suggest that dissociation of activated JAK1 from the receptor results in separate targeting of JAK1 for proteasomal degradation through a mechanism dependent on the SOCS3 SOCS box thus preventing further activation of STAT3.  相似文献   

14.
Xu N  Wang SQ  Tan D  Gao Y  Lin G  Xi R 《Developmental biology》2011,354(1):2780-43
Tissue-specific adult stem cells are commonly associated with local niche for their maintenance and function. In the adult Drosophila midgut, the surrounding visceral muscle maintains intestinal stem cells (ISCs) by stimulating Wingless (Wg) and JAK/STAT pathway activities, whereas cytokine production in mature enterocytes also induces ISC division and epithelial regeneration, especially in response to stress. Here we show that EGFR/Ras/ERK signaling is another important participant in promoting ISC maintenance and division in healthy intestine. The EGFR ligand Vein is specifically expressed in muscle cells and is important for ISC maintenance and proliferation. Two additional EGFR ligands, Spitz and Keren, function redundantly as possible autocrine signals to promote ISC maintenance and proliferation. Notably, over-activated EGFR signaling could partially replace Wg or JAK/STAT signaling for ISC maintenance and division, and vice versa. Moreover, although disrupting any single one of the three signaling pathways shows mild and progressive ISC loss over time, simultaneous disruption of them all leads to rapid and complete ISC elimination. Taken together, our data suggest that Drosophila midgut ISCs are maintained cooperatively by multiple signaling pathway activities and reinforce the notion that visceral muscle is a critical component of the ISC niche.  相似文献   

15.
16.
17.
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.  相似文献   

18.
19.
20.
Adult stem cells are the most primitive cells of a lineage and are distinguished by the properties of self-renewal and multipotency. Coordinated control of stem cell proliferation and multilineage differentiation is essential to ensure a steady output of differentiated daughter cells necessary to maintain tissue homeostasis. However, little is known about the signals that coordinate stem cell proliferation and daughter cell differentiation. Here we investigate the role of the conserved JAK/STAT signaling pathway in the Drosophila intestinal stem cell (ISC) lineage. We show first, that JAK/STAT signaling is normally active in both ISCs and their newly formed daughters, but not in terminally differentiated enteroendocrine (ee) cells or enterocyte (EC) cells. Second, analysis of ISC lineages shows that JAK/STAT signaling is necessary but not sufficient for daughter cell differentiation, indicating that competence to undergo multilineage differentiation depends upon JAK/STAT. Finally, our analysis reveals JAK/STAT signaling to be a potent regulator of ISC proliferation, but not ISC self-renewal. On the basis of these findings, we suggest a model in which JAK/STAT signaling coordinates the processes of stem cell proliferation with the competence of daughter cells to undergo multilineage differentiation, ensuring a robust cellular output in the lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号