首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that hippocampus-related cognitive processes are especially sensitive to ethanol. To provide an insight into the biochemical mechanisms underlying the hippocampus-related functional deficits associated with prenatal ethanol exposure, we investigated the effects of chronic ethanol exposure on the phospholipid profile in developing rat hippocampi. High-performance liquid chromatography/electrospray ionization-mass spectrometry analysis revealed that ethanol lowered the levels of total phosphatidylserine (PS) by 15-20% at all ages examined, primarily owing to the reduction in 1-stearoyl-2-docosahexaenoyl-PS (18:0,22:6n-3-PS) species. Ethanol exposure also led to a decrease in phosphatidylcholine (PC) and an increase in phosphatidylethanolamine (PE), but the total phospholipid content was not significantly changed. At the fatty acid level, ethanol exposure significantly decreased the 22:6n-3 content at postnatal days 0 and 21, with a slight increase in 22:5n-6, without changing the total fatty acid content significantly. In conclusion, ethanol depleted PS, especially 22:6-containing species, and PC from hippocampal membranes with concomitant increase in PE. Alteration of the phospholipid profile in the hippocampus resulting from exposure to ethanol during prenatal and developmental stages may have significant implications with respect to the cognitive dysfunction observed in fetal alcohol syndrome.  相似文献   

2.
Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [3H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.  相似文献   

3.
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.  相似文献   

4.
The development of a new mass spectrometric lipid profiling methodology permits the identification of cellular phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate/phosphatidylinositol trisphosphate (PIP/PIP2/PIP3) species that includes the fatty acyl composition. Using electrospray ionization mass spectrometry, we were able to resolve and identify 28 PIP and PIP2 compounds as well as 8 PIP3 compounds from RAW 264.7 or primary murine macrophage cell extracts. Analysis of PIP profiles after agonist stimulation of cells revealed the generation of differential PIP3 species and permitted us to propose a novel means for regulation and specificity in signaling through PIP3. This is the first reported identification of intact, cellular PIP3 by mass spectral analysis. The ability to analyze the fatty acyl chain composition of signaling lipids initiates new venues for investigation of the processes by which specific polyphosphoinositide species mediate.  相似文献   

5.
Dynamic lipidomics of the nucleus   总被引:3,自引:0,他引:3  
Once nuclear envelope membranes have been removed from isolated nuclei, around 6% of mammalian cell phospholipid is retained within the nuclear matrix, which calculations suggest may occupy 10% of the volume of this subcellular compartment. It is now acknowledged that endonuclear phospholipid, largely ignored for the past 40 years, provides substrate for lipid-mediated signaling events. However, given its abundance, it likely also has other as yet incompletely defined roles. Endonuclear phosphatidylcholine is the predominant phospholipid comprising distinct and highly saturated molecular species compared with that of the whole cell. Moreover, this unusual composition is subject to tight homeostatic maintenance even under conditions of extreme dietary manipulation, presumably reflecting a functional requirement for highly saturated endonuclear phosphatidylcholine. Recent application of new lipidomic technologies exploiting tandem electrospray ionization mass spectrometry in conjunction with deuterium stable isotope labeling have permitted us to probe not just molecular species compositions but endonuclear phospholipid acquisition and turnover with unparalleled sensitivity and specificity. What emerges is a picture of a dynamic pool of endonuclear phospholipid subject to autonomous regulation with respect to bulk cellular phospholipid metabolism. Compartmental biosynthesis de novo of endonuclear phosphatidylcholine contrasts with import of phosphatidylinositol synthesized elsewhere. However, irrespective of the precise temporal-spatial-dynamic relationships underpinning phospholipid acquisition, derangement of endonuclear lipid-mediated signaling from these parental phospholipids halts cell growth and division indicating a pivotal control point. This in turn defines the manipulation of compartmentalized endonuclear phospholipid acquisition and metabolism as intriguing potential targets for the development of future antiproliferative strategies.  相似文献   

6.
7.
Cardiolipin is a prominent component of the mitochondrial inner membranes contributing to the regulation of multiple discrete mitochondrial functions. Here, we extend shotgun lipidomics to identify and quantitate cardiolipin molecular species directly from lipid extracts of biological samples. Three shotgun lipidomics approaches for analyses of cardiolipin molecular species were developed using either a continuous ion-transmission instrument (i.e., triple-quadrupole type) with either low or high mass resolution settings or a high mass resolution hybrid pulsed instrument [i.e., quadrupole time-of-flight (QqTOF) type]. Three chemical principles were used for the development of these approaches. These include the marked enrichment of linoleate in cardiolipin to maximize the signal-to-noise ratio, the specific neutral loss of ketenes from doubly charged cardiolipin molecular ions to yield doubly charged triacyl monolysocardiolipins, and the doubly charged character of two phosphates in each cardiolipin molecular species. Through these techniques, we identified and quantified the specific molecular species profiles of cardiolipin directly from lipid extracts of mouse heart, liver, and skeletal muscle. The accuracy ( approximately 5%) and the low end of the linear dynamic range (10 fmol/microl) for quantitation make these approaches useful for studying alterations in cardiolipin metabolism in multiple disease states using either type of mass spectrometer.  相似文献   

8.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

9.
As current diagnostic markers for dry eye syndrome (DES) are lacking in both sensitivity and specificity, a pressing concern exists to develop activity markers that closely align with the principal axes of disease progression. In this study, a comprehensive lipidomic platform designated for analysis of the human tear lipidome was employed to characterize changes in tear lipid compositions from a cohort of 93 subjects of different clinical subgroups classified based on the presence of dry eye symptoms and signs. Positive correlations were observed between the tear levels of cholesteryl sulfates and glycosphingolipids with physiological secretion of tears, which indicated the possible lacrimal (instead of meibomian) origin of these lipids. Notably, we found wax esters of low molecular masses and those containing saturated fatty acyl moieties were specifically reduced with disease and significantly correlated with various DES clinical parameters such as ocular surface disease index, tear breakup time, and Schirmer''s I test (i.e., both symptoms and signs). These structure-specific changes in tear components with DES could potentially serve as unifying indicators of disease symptoms and signs. In addition, the structurally-specific aberrations in tear lipids reported here were found in patients with or without aqueous deficiency, suggesting a common pathology for both DES subtypes.  相似文献   

10.
目前,有关不定芽发生的研究主要集中在单基因的调控方面,缺乏转录组方面的系统研究.利用RNA-seq高通量测序技术在全基因组范围内检测了不定芽发生早期的基因表达谱,共检测到2457个差异表达基因.这些基因参与了激素代谢和信号转导、愈伤组织和侧根的形成、茎顶端分生组织的发育和光合作用等过程.进一步的途径富集分析表明,不定芽发生早期苯丙氨酸代谢和苯丙胺素合成等途径相关的基因显著富集.并且苯丙氨酸可以显著抑制不定芽的发生,暗示了苯丙氨酸代谢和苯丙胺素的合成可能在不定芽发生过程起着重要的作用.  相似文献   

11.
To evaluate bile acid (BA) metabolism in detail, we established a method for analyzing BA composition in various tissues and intestinal contents using ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Twenty-two individual BAs were determined simultaneously from extracts. We applied this method to define the differences in BA metabolism between two rat strains, WKAH and DA. The amount of total bile acids (TBAs) in the liver was significantly higher in WKAH than in DA rats. In contrast, TBA concentration in jejunal content, cecal content, colorectal content, and feces was higher in DA rats than in WKAH rats. Nearly all BAs in the liver were in the taurine- or glycine-conjugated form in DA rats, and the proportion of conjugated liver BAs was up to 75% in WKAH rats. Similar trends were observed for the conjugation rates in bile. The most abundant secondary BA in cecal content, colorectal content, and feces was hyodeoxycholic acid in WKAH rats and omega-muricholic acid in DA rats. Analyzing detailed BA profiles, including conjugation status, in a single run is possible using UPLC/ESI-MS. This method will be useful for investigating the roles of BA metabolism under physiological and pathological conditions.  相似文献   

12.
Smith–Lemli–Opitz syndrome (SLOS) is a complex hereditary disease caused by an enzymatic defect in the last step of cholesterol biosynthesis. Progressive retinal degeneration occurs in an AY9944-induced rat model of SLOS, with biochemical and electroretinographic hallmarks comparable with the human disease. We evaluated alterations in the non-sterol lipid components of the retina in this model, compared with age-matched controls, using lipidomic analysis. The levels of 16:0–22:6 and 18:0–22:6 phosphatidylcholine molecular species in retinas were less by > 50% and > 33%, respectively, in rats treated for either 2 or 3 months with AY9944. Relative to controls, AY9944 treatment resulted in > 60% less di-22:6 and > 15% less 18:0–22:6 phosphatidylethanolamine molecular species. The predominant phosphatidylserine (PS) molecular species in control retinas were 18:0–22:6 and di-22:6; notably, AY9944 treatment resulted in > 80% less di-22:6 PS, relative to controls. Remarkably, these changes occurred in the absence of n3 fatty acid deficiency in plasma or liver. Thus, the retinal lipidome is globally altered in the SLOS rat model, relative to control rats, with the most profound changes being less phosphatidylcholine, phosphatidylethanolamine, and PS molecular species containing docosahexaenoic acid (22:6). These findings suggest that SLOS may involve additional metabolic compromise beyond the primary enzymatic defect in the cholesterol pathway.  相似文献   

13.
14.
The shape of Arabidopsis thaliana dry seed is described here as a prolate spheroid. The accuracy of this approximation is discussed. Considering its limitations, it allows a geometric approximation to the analysis of changes occurring in seed shape during imbibition prior to seed germination as well as the differences in shape between genotypes and their changes during imbibition. The triple mutant ein2-1, ers1-2, etr1-7 presents notable alterations in seed shape. In addition, seeds of this and other mutants in the ethylene signaling pathway (ctr1-1, eto1-1, etr1-1, ein2-1) show different response to imbibition than the wild type. Imbibed seeds of the wild type increase their asymmetry compared with the dry seeds. This is detected by the relative changes in the curvature values in both poles. Thus, during imbibition of the wild-type seeds, the reduction in curvature values observed in the basal pole gives them an ovoid shape. In contrast, in the seeds of the ethylene mutants, reduction in curvature values occurs in both basal and apical poles, and its shape remains as a prolate spheroid. Our data indicate that the ethylene signaling pathway is involved, in general, in the complex regulation of seed shape and, in particular, in the establishment of polarity in seeds, controlling curvature values in the seed poles.  相似文献   

15.
Protein ubiquitylation is a central regulatory mechanism that controls numerous processes in plants, including hormone signaling, developmental progression, responses to biotic and abiotic challenges, protein trafficking and chromatin structure. Despite data implicating thousands of plant proteins as targets, so far only a few have been conclusively shown to be ubiquitylated in planta . Here we describe a method to isolate ubiquitin–protein conjugates from Arabidopsis that exploits a stable transgenic line expressing a synthetic poly- UBQ gene encoding ubiquitin (Ub) monomers N-terminally tagged with hexahistidine. Following sequential enrichment by Ub-affinity and nickel chelate-affinity chromatography, the ubiquitylated proteins were trypsinized, separated by two-dimensional liquid chromatography, and analyzed by mass spectrometry. Our list of 54 non-redundant targets, expressed by as many as 90 possible isoforms, included those predicted by genetic studies to be ubiquitylated in plants (EIN3 and JAZ6) or shown to be ubiquitylated in other eukaryotes (ribosomal subunits, elongation factor 1α, histone H1, HSP70 and CDC48), as well as candidates whose control by the Ub/26S proteasome system is not yet appreciated. Ub attachment site(s) were resolved for a subset of these proteins, but surprisingly little sequence consensus was detected, implying that specific residues surrounding the modified lysine are not important determinants for ubiquitylation. We also identified six of the seven available lysine residues on Ub itself as Ub attachment sites, together with evidence for a branched mixed-linkage chain, suggesting that the topologies of Ub chains can be highly complex in plants. Taken together, our method provides a widely applicable strategy to define ubiquitylation in any tissue of intact plants exposed to a wide range of conditions.  相似文献   

16.
17.
18.
19.
20.
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号