首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In a screen for MADS box genes which activate and/or repress flowering in rice, we identified a gene encoding a MADS domain protein (OsSOC1) related to the Arabidopsis gene AtSOC1. AtSOC1 and OsSOC1 show a 97% amino acid similarity in their MADS domain. The rice gene contains a large first intron of 27.6 kb compared to the 1 kb intron in Arabidopsis. OsSOC1 is located on top of the short arm of chromosome 3, tightly linked to the heading date locus, Hd9. OsSOC1 is expressed in vegetative tissues, and expression is elevated at the time of floral initiation, 40-50 days after sowing, and remains uniformly high thereafter, similar to the expression pattern of AtSOC1. The constitutive expression of OsSOC1 in Arabidopsis results in early flowering, suggesting that the rice gene is a functional equivalent of AtSOC1. We were not able to identify FLC-like sequences in the rice genome; however, we show that ectopic expression of the Arabidopsis FLC delays flowering in rice, and the up-regulation of OsSOC1 at the onset of flowering initiation is delayed in the AtFLC transgenic lines. The reciprocal recognition and flowering time effects of genes introduced into either Arabidopsis or rice suggest that some components of the flowering pathways may be shared. This points to a potential application in the manipulation of flowering time in cereals using well characterized Arabidopsis genes.  相似文献   

4.
5.
FLC or not FLC: the other side of vernalization   总被引:4,自引:0,他引:4  
Vernalization is the promotion of the competence for floweringby long periods of low temperatures such as those typicallyexperienced during winters. In Arabidopsis, the vernalizationresponse is, to a large extent, mediated by the repression ofthe floral repressor FLC, and the stable epigenetic silencingof FLC after cold treatments is essential for vernalization.In addition to FLC, other vernalization targets exist in Arabidopsis.In grasses, vernalization seems to be entirely independent ofFLC. Here, the current understanding of FLC-independent branchesof the vernalization pathway in Arabidopsis and vernalizationwithout FLC in grasses is discussed. This review focuses onthe role of AGL19, AGL24, and the MAF genes in Arabidopsis.Interestingly, vernalization acts through related molecularmachineries on distinct targets. In particular, protein complexessimilar to Drosophila Polycomb Repressive Complex 2 play a prominentrole in establishing an epigenetic cellular memory for cold-regulatedexpression states of AGL19 and FLC. Finally, the similar networktopology of the apparently independently evolved vernalizationpathways of grasses and Arabidopsis is discussed. Key words: AGL19, Arabidopsis, chromatin, epigenetics, FLC, flowering time, polycomb, PRC2, vernalization Received 19 December 2007; Revised 11 February 2008 Accepted 15 February 2008  相似文献   

6.
Floral transition is regulated by environmental and endogenous signals. Previously, we identified VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 as phytochrome B-interacting factors. VOZ1 and VOZ2 redundantly promote flowering and have pivotal roles in the downregulation of FLOWERING LOCUS C (FLC), a central repressor of flowering in Arabidopsis. Here, we showed that the late-flowering phenotypes of the voz1 voz2 mutant were suppressed by vernalization in the Columbia and FRIGIDA (FRI)-containing accessions, which indicates that the late-flowering phenotype of voz1 voz2 mutants was caused by upregulation of FLC. We also showed that the other FLC clade members, MADS AFFECTING FLOWERING (MAF) genes, were also a downstream target of VOZ1 and VOZ2 as their expression levels were also increased in the voz1 voz2 mutant. Our results suggest that the FLC clade genes integrate signals from VOZ1/VOZ2 and vernalization to regulate flowering.  相似文献   

7.
植物开花是从营养生长到生殖状态的重要发育转变,是多种内在因子和环境因素共同作用的结果。在拟南芥开花调控网络中,开花抑制基因FLC处于枢纽地位。FLC的表达受许多来自环境和生长发育的信号调控,主要包括:PAF1复合体、SWR1复合体成员,FRI依赖途径、自主途径和春化作用途径基因。本文主要综述了影响FLC表达的春化相关基因及天然早花突变体的研究进展,并根据最新的研究成果提出该研究领域的研究方向和重点。  相似文献   

8.
The timing of flowering is important for the reproductive success of plants. Here we describe the identification and characterization of a new MADS-box gene, FLOWERING LOCUS M (FLM), which is involved in the transition from vegetative to reproductive development. FLM is similar in amino-acid sequence to FLC, another MADS-box gene involved in flowering-time control. flm mutants are early flowering in both inductive and non-inductive photoperiods, and flowering time is sensitive to FLM dosage. FLM overexpression produces late-flowering plants. Thus FLM acts as an inhibitor of flowering. FLM is expressed in areas of cell division such as root and shoot apical regions and leaf primordia.  相似文献   

9.
高等植物开花诱导研究进展   总被引:19,自引:0,他引:19  
孙昌辉  邓晓建  方军  储成才 《遗传》2007,29(10):1182-1182―1190
高等植物由营养生长向生殖生长转换的过程称为开花诱导。开花诱导过程由遗传和外界环境两个因素决定, 受错综复杂的网络信号传导途径调控。近年来, 在双子叶模式植物拟南芥中, 开花诱导研究取得了很大进展, 探明了控制开花诱导的4条主要途径(光周期途径、春化途径、自主途径和GA途径)及调控机制。研究也表明, 开花基因在拟南芥、水稻以及其他高等植物之间具有很高的保守性。文章对相关研究的最新进展作一综述, 并指出了目前研究中存在的问题及相应的研究对策。  相似文献   

10.
Le Corre V 《Molecular ecology》2005,14(13):4181-4192
Flowering Locus C (FLC) and Frigida are two interacting genes controlling flowering time variation in Arabidopsis thaliana. Variation at these genes was surveyed in 12 A. thaliana populations sampled in France. These populations were also screened for variation at molecular markers [12 microsatellites and 19 cleaved amplified polymorphic sequence (CAPS) markers] and at seven quantitative traits measured with and without vernalization. Seven populations were highly polymorphic at markers (H(S) = 0.57 at microsatellites, 0.24 at CAPS) and showed heritable variation for bolting time and some other traits. Five populations were genetically fixed or nearly fixed. Q(ST) for bolting time without vernalization was significantly higher than F(ST), suggesting local divergent selection. One of the two haplotype groups at FLC (FLC(A)) was very predominant (frequency of 99%). The first exon of Frigida showed elevated nonsynonymous variation, and nine loss-of-function mutations were found throughout the gene. The association between loss-of-function and earlier bolting was confirmed. Overall, 18 Frigida haplotypes were detected. The pattern of variation at Frigida was largely similar to that found at markers and traits, with the same populations being fixed or highly diverse. Metapopulation dynamics is thus probably the main factor shaping genetic variation in A. thaliana. However, F(ST) for functional (FRI) vs. nonfunctional (FRI(Delta)) haplotypes was significantly higher than F(ST) at markers. This suggested that loss-of-function at Frigida is under local selection for flowering time.  相似文献   

11.
12.
13.
An early flowering mutant of Arabidopsis, elf32-D was isolated from activation tagging screening. The mutant flowered earlier than wild type under both long day and short day conditions. The mutant phenotype was caused by overexpression of a Kunitz-type trypsin inhibitor gene (AtKTI1). The expression of AtKTI1 was detected in leaves, flowers, siliques and roots. In the vegetative state, no change of flowering integrator gene expression was observed for AtKTI1 overexpressing plants. In contrast, at the reproductive stage, its overexpression resulted in the down-regulation of FLC, a strong floral repressor which integrates the autonomous and vernalization pathways and also the up-regulation of FT and AP1, which are downstream floral integrator genes. It is probable that the AtKTI1 overexpression inhibits components of the flowering signaling pathway upstream of FLC, eventually regulating expression of FLC, or causing perturbations in plant metabolism and thus indirectly affecting flowering.  相似文献   

14.
Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons.  相似文献   

15.
Analysis of leaf proteins in late flowering mutants of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Late flowering monogenic mutants of Arabidopsis thaliana (L.) Heynh. at the loci co, gi, fca, fve, fwa, fha, fpa, fy and their corresponding wild type, Landsberg erecta , were analysed by two-dimensional gel electrophoresis. All plants were grown under continuous light and proteins were extracted from leaves of the same age (20-day-old). The polypeptide patterns of the mutants at the loci co, gi, fca, fve, fwa, fha, fpa , and Landsberg erecta were identical. The mutant at the fy locus showed a qualitative difference with Landsberg erecta . Crosses were made between this line and the wild type Landsberg erecta . F2 plants, resulting from autopollination of the hybrid, were analysed and showed no cosegregation between the observed protein and the flowering phenotype, indicating that these two lines differ by more than a single mutation.  相似文献   

16.
17.
18.
19.
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.  相似文献   

20.
The effect of daylength on flowering was investigated in the following mutants of Arabidopsis thaliana : phytochrome B deficient ( hy3=phyB ); phytochrome chromophore deficient ( hy2 ); late-flowering ( co, gi. fca and fwa ); the hy2 and hy3 , late-flowering double mutants and the hy2, hy3 , late-flowering triple mutants. The hy mutants flower with fewer rosette leaves than the Landsberg erecta wild type under both long day and short day conditions and express this effect to a different degree in all late-flowering mutant backgrounds and under both daylengths, with the exception of fca under short days. The number of cauline leaves and days to flowering is less affected by the hy genotype. The hy2, hy3 double mutants flower with even fewer rosette leaves than the hy2 and hy3 monogenic mutants, suggesting an inhibitory role for phytochrome B and other stable phytochromes on flowering. The complex interaction between phytochrome, daylength and the effect of the late-flowering genes on the various parameters that describe the transition to flowering in Arabidopsis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号