首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recycling materials from end‐of‐life products has the potential to create environmental benefit by displacing more harmful primary material production. However, displacement is governed by market forces and is not guaranteed; if full displacement does not occur, the environmental benefits of recycling are reduced or eliminated. Therefore, quantifying the true “displacement rate” caused by recycling is essential to accurately assess environmental benefits and make optimal environmental management decisions. Our 2016 article proposed a market‐based methodology to estimate actual displacement rates following an increase in recycling or reuse. The current article demonstrates the operation, utility, and challenges of that methodology in the context of the U.S. aluminum industry. Sensitivity analyses reveal that displacement estimates are sensitive to uncertainty in price elasticities. Results suggest that 100% displacement is unlikely immediately following a sustained supply‐driven increase in aluminum recycling and even less likely in the long term. However, zero and even negative displacement are possible. A variant of the model revealed that demand‐driven increases in recycling are less likely than supply‐driven changes to result in full displacement. However, model limitations exist and challenges arose in the estimation process, the effects of which are discussed. We suggest implications for environmental assessment, present lessons learned from applying the estimation methodology, and highlight the need for further research in the market dynamics of recycling.  相似文献   

2.
Proponents of material recycling typically point to two environmental benefits: disposal (landfill/incinerator) reduction and primary production displacement. However, in this paper we mathematically demonstrate that, without displacement, recycling can delay but not prevent any existing end‐of‐life material from reaching final disposal. The only way to reduce the amount of material ultimately landfilled or incinerated is to produce less in the first place; material that is not made needs not be disposed. Recycling has the potential to reduce the amount of material reaching end of life solely by reducing primary production. Therefore, the “dual benefits” of recycling are in fact one, and the environmental benefit of material recycling rests in its potential to displace primary production. However, displacement of primary production from increased recycling is driven by market forces and is not guaranteed. Improperly assuming all recycled material avoids disposal underestimates the environmental impacts of the product system. We show that the potential magnitude of this error is substantial, though for inert recyclables it is lower than the error introduced by improperly assuming all recycled material displaces primary material production. We argue that life cycle assessment end‐of‐life models need to be updated so as not to overstate the benefits of recycling. Furthermore, scholars and policy makers should focus on finding and implementing ways to increase the displacement potential of recyclable materials rather than focusing on disposal diversion targets.  相似文献   

3.
Stationary batteries are projected to play a role in the electricity system of Switzerland after 2030. By enabling the integration of surplus production from intermittent renewables, energy storage units displace electricity production from different sources and potentially create environmental benefits. Nevertheless, batteries can also cause substantial environmental impacts during their manufacturing process and through the extraction of raw materials. A prospective consequential life cycle assessment (LCA) of lithium metal polymer and lithium‐ion stationary batteries is undertaken to quantify potential environmental benefits and drawbacks. Projections are integrated into the LCA model: Energy scenarios are used to obtain marginal electricity supply mixes, and projections about the battery performances and the recycling process are sourced from the literature. The roles of key parameters and methodological choices in the results are systematically investigated. The results demonstrate that the displacement of marginal electricity sources determines the environmental implications of using batteries. In the reference scenario representing current policy, the displaced electricity mix is dominated by natural gas combined cycle units. In this scenario, the use of batteries generates environmental benefits in 12 of the 16 impact categories assessed. Nevertheless, there is a significant reduction in achievable environmental benefits when batteries are integrated into the power supply system in a low‐carbon scenario because the marginal electricity production, displaced using batteries, already has a reduced environmental impact. The direct impacts of batteries mainly originate from upstream manufacturing processes, which consume electricity and mining activities related to the extraction of materials such as copper and bauxite.  相似文献   

4.
A healthy debate on the treatment of metals recycling in the life cycle assessment (LCA) community has persisted for more than a decade. While no clear consensus across stakeholder groups has emerged, the metals industry has endorsed a set of recycling “facts” that support a single approach, end‐of‐life recycling, for evaluating the environmental benefits of metals recycling. In this article we draw from research conducted in several disciplines and find that three key tenets of the metals industry capture the theoretical potential of metals recycling from a metallurgical standpoint rather than reflecting observed behavior. We then discuss the implications of these conclusions on environmental emissions from metals production and recycling. Evidence is provided that, contrary to the position of the metals industry, metals are not necessarily recycled at high rates, are recycled only a small number of times before final disposal, and are sometimes limited in recycling potential by the economics of contaminant removal. The analysis concludes that metal recycled from old scrap largely serves as an imperfect substitute for primary metal. As a result, large‐scale displacement of primary production and its associated environmental emissions is currently limited to a few specific instances.  相似文献   

5.

Purpose

Waste management for end-of-life (EoL) smartphones is a growing problem due to their high turnover rate and concentration of toxic chemicals. The versatility of modern smartphones presents an interesting alternative waste management strategy: repurposing. This paper investigates the environmental impact of smartphone repurposing as compared to traditional refurbishing using Life Cycle Assessment (LCA).

Methods

A case study of repurposing was conducted by creating a smartphone “app” that replicates the functionality of an in-car parking meter. The environmental impacts of this prototype were quantified using waste management LCA methodology. Studied systems included three waste management options: traditional refurbishment, repurposing using battery power, and repurposing using a portable solar charger. The functional unit was defined as the EoL management of a used smartphone. Consequential system expansion was employed to account for secondary functions provided; avoided impacts from displaced primary products were included. Impacts were calculated in five impact categories. Break-even displacement rates were calculated and sensitivity to standby power consumption were assessed.

Results and discussion

LCA results showed that refurbishing creates the highest environmental impacts of the three reuse routes in every impact category except ODP. High break-even displacement rates suggest that this finding is robust within a reasonable range of primary cell phone displacement. The repurposed smartphone in-car parking meter had lower impacts than the primary production parking meter. Impacts for battery-powered devices were dominated by use-phase charging electricity, whereas solar-power impacts were concentrated in manufacturing. Repurposed phones using battery power had lower impacts than those using solar power, however, standby power sensitivity analysis revealed that solar power is preferred if the battery charger is left plugged-in more than 20 % of the use period.

Conclusions

Our analysis concludes that repurposing represents an environmentally preferable EoL option to refurbishing for used smartphones. The results suggest two generalizable findings. First, primary product displacement is a major factor affecting whether any EoL strategy is environmentally beneficial. The benefit depends not only on what is displaced, but also on how much displacement occurs; in general, repurposing allows freedom to target reuse opportunities with high “displacement potential.” Second, the notion that solar power is preferable to batteries is not always correct; here, the rank-order is sensitive to assumptions about user behavior.  相似文献   

6.
China produces and consumes a large amount of batteries annually, which leads to many waste batteries needing to be recycled. The collection and recycling system of primary, alkaline secondary, and lithium‐ion secondary batteries in China is particularly poor, and waste battery recycling enterprises generally sustain economic losses if they solely use waste batteries as raw materials. Increasing the profits of waste battery recycling systems is a key problem that needs to be considered. This article quantitatively analyzes waste battery generation in China by using annual sales data and probable lifetime distribution of various batteries. The results show that the rapid growth of battery usage has led to an increased generation of waste batteries and the percentage of different types of waste batteries is changing over time. In 2013, the total quantity of all waste batteries in the medium lifetime scenario reached 570 kilotons, of which primary, alkaline secondary, and lithium‐ion secondary waste batteries accounted for approximately 36%, 28%, and 35%, respectively. Based on a real‐world case study of a typical domestic waste battery recycling enterprise in China, material flow analysis and cost‐benefit analysis were conducted to study the development of the recycling process of comingled waste batteries. Through scenario analysis, we conclude that increasing the use of waste batteries as raw materials and the recycling of other materials that are less valuable reduces the profits of the waste battery recycling enterprise. Higher profits can be achieved by adding the production of high value‐added downstream products and government support. At the same time, the essential role of the government in developing a waste battery recycling system was identified. Finally, relevant suggestions are made for improvements in both the government and enterprise sectors.  相似文献   

7.
Application and development of the LCA methodology to the context of the building sector makes several building specific considerations necessary, as some key characteristics of products in the building sector differ considerably from those of other industrial sectors. The largest difference is that the service life of a building can stretch over centuries, rather than decades or years as seen for consumer products. The result of the long service life is that it is difficult to obtain accurate data and to make relevant assumptions about future conditions regarding, for example, recycling. These problems have implications on the issue of allocation in the building sector, in the way that several allocation procedures ascribe environmental loads to users of recycled or reused products and materials in the future which are unknown today. The long service life for buildings, building materials and building components, is associated with the introduced concept of a virtual parallel time perspective proposed here, which basically substitutes historical and future processes and values with current data. Further, the production and refining of raw material as a parallel to upgrading of recycled material, normally contains several intermediate products. A suggestion is given for how to determine the comparability of intermediate materials. The suggested method for allocation presented is based on three basic assumptions: (1) If environmental loads are to be allocated to a succeeding product life cycle, the studied actual life cycle has to take responsibility for upgrading of the residual material into secondary resources. (2) Material characteristics and design of products are important factors to estimate the recyclable amount of the material. Therefore, a design factor is suggested using information for inherent material properties combined with information of the product context at the building level. (3) The quality reduction between the materials in two following product life cycles is indicated as the ratio between the market value for the material in the products. The presented method can be a good alternative for handling the problem of open-loop recycling allocation in the context of the building sector if a consensus for the use of the fictive parallel time perspective and the use of the design factor can be established. This as the use of the time perspective and design factor is crucial to be able to deal with the problem of long service lives for buildings and building materials and the specific characteristics of the same building materials and components built into different building contexts.  相似文献   

8.
Life cycle assessment practitioners struggle to accurately allocate environmental burdens of metals recycling, including the temporal dimension of environmental impacts. We analyze four approaches for calculating aluminum greenhouse gas emissions: the recycled content (RC) or cut‐off approach, which assumes that demand for recycled content displaces primary production; end‐of‐life recycling (EOLR), which assumes that postuse recycling displaces primary production; market‐based (MB) approaches, which estimate changes in supply and demand using price elasticities; and value‐corrected substitution (VCS), which allocates impact based on price differences between primary and recycled material. Our analysis suggests that applications of the VCS approach do not adequately account for the changing scrap to virgin material price ratio over time, whereas MB approaches do not address stock accumulation and depletion. The EOLR and RC approaches were analyzed using two case studies: U.S. aluminum beverage cans and vehicle engine blocks. These approaches produced similar results for beverage cans, which have a closed material loop system and a short product life. With longer product lifetimes, as noted with the engine blocks, the magnitude and timing of the emissions differs greatly between the RC and EOLR approaches. The EOLR approach indicates increased impacts at the time of production, offset by negative impacts in future years, whereas the RC approach assumes benefits to increased recycled content at the time of production. For vehicle engine blocks, emissions using EOLR are 140% higher than with RC. Results are highly sensitive to recycled content and future recycling rates, and the choice of allocation methods can have significant implications for life cycle studies.  相似文献   

9.
- Preamble. In this series of two papers, a methodology to calculate the average number of times a material is used in a society from cradle to grave is presented and applied to allocation of environmental impact of virgin material. Part 1 focuses on methodology development and shows how the methodology works with hypothetical examples of material flows. Part 2 presents case studies for steel recycling in Japan, in which the methodology is applied and allocation of environmental impact of virgin steel is conducted. - Abstract Goal, Scope and Background. It has been recognized that LCA has a limitation in assessing open cycle recycling of materials because of inevitable subjective judgments in setting system boundary. According with the enforcement of recycling laws, there has been a rapid increase in recycling ratio of materials at the end-of-life of products in many industrialized countries. So, materials' life cycle is getting more complicated, which makes it difficult to quantify the environmental impacts of materials used in a product in an appropriate way. The purpose of this paper is to develop a methodology to calculate the average number of times a material is used in a society from cradle to grave. The method developed in this paper derives the average number of times material is used; this value could be used for allocation of environmental burdens of virgin material as well as an indicator for assessing the state of material use in a certain year, based on material flow of material in that year. Main Features Our methodology is based on Markov chain model using matrix-based numerical analysis. A major feature of this method is that it creates transition probability matrices for a material from the way in which the material is produced, consumed, and recycled, making it possible to simply elicit indicators that assess the status of material use in products in society. Our methodology could be an alternative method to derive the average number of times material is used, which could be used for allocation of environmental burdens of virgin material. Results and Discussions The methodology was applied to hypothetical examples of material flows, in which a virgin material was produced and used in products, recycled and finally landfilled. In some cases, closed loop and open loop recycling of materials existed. The transition probability matrix was created for each material flow, and how many times a virgin material is used in products until all of the elements are ultimately landfilled. Conclusions This methodology is applicable to a complicated material flow if the status of residence of a material and its flow in a society can be figured out. All the necessary data are the amount of virgin material production, amount of the material used in products, recycling rate of the material at the end of life of each product, the amount of scrap of the material that are used for products. In Part 2 of this paper, case studies for steel were conducted.  相似文献   

10.

Purpose

In a world where the population is expected to peak at around 9 billion people in the next 30 to 40 years, carefully managing our finite natural resources is becoming critical. We must abandon the outdated ‘take, make, consume and dispose’ mentality and move toward a circular economy model for optimal resource efficiency. Products must be designed for reuse and remanufacturing, which would reduce significant costs in terms of energy and natural resources.

Methods

To measure progress in achieving a circular economy, we need a life cycle approach that measures the social, economic and environmental impact of a product throughout its full life cycle—from raw material extraction to end-of-life (EoL) recycling or disposal. Life cycle thinking must become a key requirement for all manufacturing decisions, ensuring that the most appropriate material is chosen for the specific application, considering all aspects of a products’ life. The steel industry has been developing LCI data for 20 years. This is used to assess a product’s environmental performance from steel production to steel recycling at end-of-life. The steel industry has developed a methodology to show the benefits of using recycled steel to make new products. Using recycled materials also carries an embodied burden that should be considered when undertaking a full LCA.

Results and discussion

The recycling methodology is in accordance with ISO 14040/44:2006 and considers the environmental burden of using steel scrap and the benefit of scrap recycling from end-of-life products. It considers the recycling of scrap into new steel as closed material loop recycling, and thus, recycling steel scrap avoids the production of primary steel. The methodology developed shows that for every 1 kg of steel scrap that is recycled at the end of the products life, a saving of 1.5 kg CO2-e emissions, 13.4 MJ primary energy and 1.4 kg iron ore can be achieved. This equates to 73, 64 and 90 %, respectively, when compared to 100 % primary production.

Conclusions

Incorporating this recycling methodology into a full LCA demonstrates how the steel industry is an integral part of the circular economy model which promotes zero waste; a reduction in the amount of materials used and encourages the reuse and recycling of materials.
  相似文献   

11.
Despite major improvements in recycling over the last decades, the pulp and paper sector is a significant contributor to global greenhouse gas emissions and other environmental pressures. Further reduction of virgin material requirements and environmental impacts requires a detailed understanding of the global material flows in paper production and consumption. This study constructs a Sankey diagram of global material flows in the paper life cycle, from primary inputs to end‐of‐life waste treatment, based on a review of publicly available data. It then analyzes potential improvements in material flows and discusses recycling and material efficiency metrics. The article argues that the use of the collection rate as a recycling metric does not directly stimulate avoidance of virgin inputs and associated impacts. An alternative metric compares paper for recycling (recovered paper) with total fibrous inputs and indicates that the current rate is at just over half of the technical potential. Material efficiency metrics are found to be more useful if they relate to the reuse potential of wastes. The material balance developed in this research provides a solid basis for further study of global sustainable production and consumption of paper. The conclusions on recycling and efficiency should be considered for improving environmental assessment and stimulating a shift toward resource efficiency and the circular economy.  相似文献   

12.
This study extends existing life cycle assessment (LCA) literature by assessing seven environmental burdens and an overall monetized environmental score for eight recycle, bury, or burn options to manage clean wood wastes generated at construction and demolition activity sites. The study assesses direct environmental impacts along with substitution effects from displacing fossil fuels and managed forest wood sourcing activities. Follow‐on effects on forest carbon stocks, land use, and fuel markets are not assessed. Sensitivity analysis addresses landfill carbon storage and biodegradation rates, atmospheric emissions controls, displaced fuel types, and two alternative carbon accounting methods commonly used for waste management LCAs. Base‐case carbon accounting considers emissions and uptakes of all biogenic and fossil carbon compounds, including biogenic carbon dioxide. Base‐case results show that recycling options (recycling into reconstituted wood products or into wood pulp for papermaking) rank better than all burning or burying options for overall monetized score as well as for climate impacts, except that wood substitution for coal in industrial boilers is slightly better than recycling for the climate. Wood substitution for natural gas boiler fuel has the highest environmental impacts. Sensitivity analysis shows the overall monetized score rankings for recycling options to be robust except for the carbon accounting method, for which all options are highly sensitive. Under one of the alternative methods, wood substitution for coal boiler fuel and landfill options with high methane capture efficiency are the best for the overall score; recycling options are next to the worst. Under the other accounting alternative, wood substitution for coal and waste‐to‐energy are the best, followed by recycling options.  相似文献   

13.
Recycling of aluminum can in terms of Life Cycle Inventory (LCI)   总被引:1,自引:0,他引:1  
Background, Aims and Scope  Life Cycle Assessment is a technique for evaluating the environmental performance of a given product by: identifying and quantifying the energy and raw materials used in its manufacturing process, as well as the emissions of pollutants to water, soil, and air inherent in this production, use and disposal, and evaluating the environmental impact associated with the use of energy and materials and the emissions of pollutants, thus identifying opportunities to improve the system in order to optimize the environmental performance of the product. CETEA (Packaging Technology Center) has conducted a Life Cycle Assessment — LCA study of aluminum can with emphasis in life cycle inventory, collecting data for the reference years 2000–2002. The goal of this paper is to present part of this complete study, focusing the influence of aluminium recycling rate on the Life Cycle Inventory (LCI) of aluminum beverage cans in Brazil. Methods  The adopted methodology was based on the recommendations of SETAC — Society of Environmental Toxicology and Chemistry and the ISO 14040 Standard, approved by the Sub-Committee 05 of the Environmental Administration Technical Committee, TC-207, from ISO — INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [1,2]. Data storage and modeling were performed by employing the PIRA Environmental Management System — PEMS [3]. Results  Taking into account the impact categories adopted in this study, it has been shown that recycling helps to improve the aluminium can environmental profile measured as LCI data. Discussion  For the transformed aluminium products, the recycling rate affects the values of the environmental parameters inventoried, but not in the same proportion, since the contribution of other stages of the product system life cycle and the recycling process remain unchanged, including the yield of this process. In general, the recycling balance is always positive due to the importance of the stages that precede the packaging production and the problem of increasing the municipal waste volume. Conclusions  The advantages of the recycling are obviously concentrated on the inventoried parameters related to the primary aluminum production and to the package disposal. The verified benefits of the recycling increase with the recycling rate enhancement. However, the effects on the inventory do not have the same magnitude of the recycling rate. This happens due to the relative contributions of the other life cycle stages, such as the transportation and sheet or can production. In agreement with the presented results, it is possible to conclude that the aluminum can recycling reduces part of the consumption of natural resources and the emissions associated to the stages previous to the production of the packaging. The parameters specifically related to the stage of aluminum production suffer reduction directly proportional to the increase of the recycling rate. In this way, all of the efforts made to increase the recycling rate will have a positive contribution to the LCI of the aluminum can. Recommendations  It is worth pointing out that LCA studies are iterative and dynamic. The data can always be refined, substituted or complemented with updated information in order to improve the representativeness of the analyzed sector. Perspectives  From this study, the aluminum sector in Brazil is able to quantify the benefits of future actions for environmental improvement of the Brazilian aluminum industry, as well as to contribute technically to Environmental Labeling initiatives regarding aluminum products. ESS-Submission Editor: Alain Dubreuil (dubreuil@nrcan.gc.ca)  相似文献   

14.
The present study addresses the topic of recycling materials from construction and demolition (C&D) wastes by proposing an environmental comparison between two recycling schemes for gravel wastes. The first scheme is the baseline process, and leads to direct most of the gravel to road construction. The second scheme relies on an innovative technology for the processing of gravel, based on electrical fragmentation, which leads to a clear separation between the aggregate contained in the gravel and the cement paste. The purity of the obtained materials opens new recycling outlets—as part of high‐quality structural concrete for the aggregate and as a substitute to natural minerals in clinker kilns for the cement paste. This shift towards more‐specific outlets for the materials found in reclaimed gravel carries significant modifications in the overall handling of C&D wastes and in the supply of natural and non‐natural materials for road construction and concrete formulation. The environmental implications of these modifications are evaluated according to a life cycle assessment methodology, which specifically addresses the influence of the distances and modalities of transportation of wastes to the crushing processes, as well as of natural and recycled aggregate to construction and demolition sites. The results point out significant environmental gains for the alternative recycling scheme, in all the considered impact categories and whatever the implemented scenarios. These gains are modulated by the various transport distances of the heavy materials heeded in the global system.  相似文献   

15.
Demand for grapes to produce pisco in southern‐coastal Peru is expected to double by 2030. However, the appellation of this beverage confines the production and limits the space for agricultural expansion, leading to a situation in which potential competition for resources with established constraints is foreseen. Hence, the objective of this study is to understand the environmental impacts, focused on climate change and water consumption, linked to the agricultural dynamism in the valleys of Ica and Pisco due to an increase in the demand of pisco. For this, the viticulture system was analyzed regarding predicted changes in terms of expansion, displacement or intensification using a consequential life cycle assessment (CLCA) approach, identifying the environmental consequences of these shifts. A two‐step CLCA model was used based on the results of a previous attributional study, in which marginal effects were estimated following the stochastic technology‐of‐choice model (STCM) operational framework. Results identified a potential for the increase of pisco production based on crop substitution in the valleys of Ica and Pisco and suggest that greenhouse gas emissions and water consumption will be reduced locally, but the displaced agricultural production would reverse this tendency. Regardless of the policy implications of the results in the analyzed system, the proposed methodology constitutes a robust methodology that can be applied to other highly constrained agricultural systems, namely, those regulated by geographic indications.  相似文献   

16.
In this paper, we develop a method to assess the environmental impacts of metal scenarios. The method is life cycle based, but enables forward looking and upscaling. The method aims at translating metal demand scenarios into technology‐specific supply scenarios, necessary to make the translation into environmental impacts. To illustrate the different steps of the methodology, we apply it to the case of seven major metals. Demand scenarios for seven major metals are taken from literature. We translate those into technology‐specific supply scenarios, and future time series of environmental impacts are specified including recycling rates, energy system transformation, efficiency improvement, and ore grade decline. We show that the method is applicable and may lead to relevant and, despite many uncertainties, fairly robust results. The projections show that the environmental impacts related to metal production are expected to increase steeply. Iron is responsible for the majority of impacts and emissions are relatively unaffected by changes in the production and energy system. For the other metals, the energy transition may have substantial benefits. By far, the most effective option for all metals appears to be to increase the share of secondary production. This would reduce emissions, but is expected to become effective only in the second half of the twenty‐first century. The circular economy agenda for metals is therefore a long‐term agenda, similar to climate change: Action must be taken soon while benefits will become apparent only at the long term.  相似文献   

17.

Purpose

Disposable beverage bottles made of polyethylene terephthalate (PET) stand in sharp contrast to many other disposable plastic packaging systems in the US for their high level of post-consumer recovery for recycling. This is due in part to container deposit programs in several US states, such as the California Redemption Value (CRV) program. We investigate the impacts of PET bottle recycling in the CRV program to evaluate its effectiveness at reducing environmental burdens.

Methods

We develop a life cycle model using standard process LCA techniques. We use the US LCI database to describe the energy production infrastructure and the production of primary materials. We describe the inventory and logistical requirements for materials recovery on the basis of state-maintained statistics and interviews with operators and industry representatives. We report inventory indicators describing energy, freight, and waste disposal requirements. We report several impact indicators based on CML and TRACI-2.0 techniques. We apply system expansion to compare post-consumer activities to produce secondary polymer against equivalent primary production.

Results and discussion

While bottle collection is distributed across the state, processing is more centralized and occurs primarily near urban centers. The average distance traveled by a bottle from discard to recovery is 145–175 km. Recycling requires 0.45–0.66 MJ of primary energy/L of beverage, versus 3.96 MJ during the pre-consumer phase. Post-consumer environmental impacts are significantly lower than pre-consumer impacts, with the exception of eutrophication. The results are robust to model sensitivity, with allocation of fuel for bottle collection being the most significant parameter. Curbside collection is slightly more energy efficient than consumer drop-off, and is subject to smaller parametric uncertainty. Recycling has the potential for net environmental benefits in five of seven impact categories, the exceptions being smog (marginal benefits) and eutrophication (increased impacts).

Conclusions

California’s decentralized program for collecting and processing PET bottles has produced a system which generates a large stream of post-consumer material with minimal environmental impact. The selection of a reclamation locale is the most significant factor influencing post-consumer impacts. If secondary PET displaces primary material, several environmental burdens can be reduced.

Recommendations and perspectives

Our results suggest that deposit programs on disposable packaging are an effective policy mechanism to increase material recovery and reduce environmental burdens. Deposit programs for other packaging systems should be considered.  相似文献   

18.

Purpose

The oft-cited waste hierarchy is considered an important rule of thumb to identify preferential waste management options and places waste prevention at the top. Nevertheless, it has been claimed that waste prevention can sometimes be less favorable than recycling because (1) recycling decreases only the primary production of materials, whereas waste prevention may reduce a combination of both primary and low-impact secondary production, and (2) waste prevention decreases the quantity of material recycled downstream and the avoided impacts associated with recycling. In response to this claim, this study evaluates the life cycle effects of waste prevention activities (WPAs) on a residential waste management system.

Methods

This life cycle assessment (LCA) contrasts the net impacts of a large residential solid waste management system (including sanitary landfilling, anaerobic digestion, composting, and recycling) with a system that incorporates five WPAs, implemented at plausible levels (preventing a total of 3.6 % of waste generation tonnage) without diminishing product service consumption. WPAs addressed in this LCA reduce the collected tonnage of addressed advertising mail, disposable plastic shopping bags, newspapers, wine and spirit packaging, and yard waste (grass).

Results and discussion

In all cases, the WPAs reduce the net midpoint and endpoint level impacts of the residential waste management system. If WPAs are incorporated, the lower impacts from waste collection, transportation, sorting, and disposal as well as from the avoided upstream production of goods, more than compensate for the diminished net benefits associated with recycling and the displaced electricity from landfill gas utilization.

Conclusions

The results substantiate the uppermost placement of waste prevention within the waste hierarchy. Moreover, further environmental benefits from waste prevention can be realized by targeting WPAs at goods that will be landfilled and at those with low recycled content.  相似文献   

19.
This study analyzes toxic chemical substance management in three U.S. manufacturing sectors from 1991 to 2008. Decomposition analysis applying the logarithmic mean Divisia index is used to analyze changes in toxic chemical substance emissions by the following five factors: cleaner production, end‐of‐pipe treatment, transfer for further management, mixing of intermediate materials, and production scale. Based on our results, the chemical manufacturing sector reduced toxic chemical substance emissions mainly via end‐of‐pipe treatment. In the meantime, transfer for further management contributed to the reduction of toxic chemical substance emissions in the metal fabrication industry. This occurred because the environmental business market expanded in the 1990s, and the infrastructure for the recycling of metal and other wastes became more efficient. Cleaner production is the main contributor to toxic chemical reduction in the electrical product industry. This implies that the electrical product industry is successful in developing a more environmentally friendly product design and production process.  相似文献   

20.
Recycling rates of aluminum are defined in different (sometimes inconsistent) ways and poorly quantified. To address this situation, the definitions and calculation methods of four groups of indicators are specified for the United States: (1) indicators used to measure recycling efficiencies of old aluminum scrap at the end‐of‐life (EOL) stage, including EOL collection rate (CR), EOL processing rate, EOL recycling rate, and EOL domestic recycling rate; (2) indicators used to compare generation or use of new with old scrap, including new to old scrap ratio, new scrap ratio (NSR), and old scrap ratio; (3) indicators used to compare production or use of primary aluminum with secondary aluminum, including four recycling input rates (RIRs); and (4) indicators used to track the sinks of aluminum metal in the U.S. anthroposphere. I find that the central estimate of EOL CR varies between 38% and 65% in the United States from 1980 to 2009 and shares a relatively similar historical trend with the primary aluminum price. The RIR is shown to be significantly reduced if excluding secondary aluminum produced from new scrap resulting from the relatively high NSR. In 2003, a time when approximately 73% of all of the aluminum produced globally since 1950 was considered to still be “in service,” approximately 68% to 69% of all metallic aluminum that had entered the U.S. anthroposphere since 1900 was still in use: 67% in domestic in‐use stock and 1% to 2% exported as scrap. Only 6% to 7% was definitely lost to the environment, although the destination of 25% of the aluminum was unknown. It was either exported as EOL products, was currently hibernating, or was lost during collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号