首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication has become the gold standard for assessing statistical results from genome-wide association studies. Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are collected from groups with distinct ethnic backgrounds or different geographic regions.  相似文献   

2.

Objective

Cholesterol gallstone disease (CGD) is a multifactorial and multistep disease. Apart from female gender and increasing age being the documented non-modifiable risk factor for gallstones the pathobiological mechanisms underlying the phenotypic expression of CGD appear to be rather complex, and one or more variations in genes could play critical roles in the diverse pathways further progressing to cholesterol crystal formation. In the present study we performed genotyping score, Multifactor dimensionality reduction (MDR) and Classification and Regression Tree analysis (CART) to identify combinations of alleles among the hormonal, hepatocanalicular transporter and adipogenesis differentiation pathway genes in modifying the risk for CGD.

Design

The present case-control study recruited total of 450 subjects, including 230 CGD patients and 220 controls. We analyzed common ESR1, ESR2, PGR, ADRB3, ADRA2A, ABCG8, SLCO1B1, PPARγ2, and SREBP2 gene polymorphisms to find out combinations of genetic variants contributing to CGD risk, using multi-analytical approaches (G-score, MDR, and CART).

Results

Single locus analysis by logistic regression showed association of ESR1 IVS1-397C>T (rs2234693), IVS1-351A>G (rs9340799) PGR ins/del (rs1042838) ADRB3-190 T>C (rs4994) ABCG8 D19H (rs11887534), SLCO1B1 Exon4 C>A (rs11045819) and SREBP2 1784G>C (rs2228314) with CGD risk. However, the MDR and CART analysis revealed ESR1 IVS1-397C>T (rs2234693) ADRB3-190 T>C (rs4994) and ABCG8 D19H (rs11887534) polymorphisms as the best polymorphic signature for discriminating between cases and controls. The overall odds ratio for the applied multi-analytical approaches ranged from 4.33 to 10.05 showing an incremental risk for cholesterol crystal formation. In conclusion, our muti-analytical approach suggests that, ESR1, ADRB3, in addition to ABCG8 genetic variants confer significant risk for cholesterol gallstone disease.  相似文献   

3.
The natural history of Crohn disease* is varied and unpredictable, and its cause is not known. No modality of treatment has definitely been shown to alter its course.Surgical treatment was carried out in a consistent fashion in 141 consecutive patients with Crohn disease. The indications for surgical operation were the complications of the disease only; these included fistula, abscess, obstruction and hemorrhage. Preoperative evaluation included upper gastrointestinal examination, barium enema, intravenous pyelogram, proctoscopy, and nutritional and volume support. In 76 of these patients previous operations had been carried out for Crohn disease.The surgical treatment was based upon the specific complication present, with adherence to the principle of resection of diseased tissue only. Ureterolysis also was necessary in 20 percent of these patients. The operative mortality was 1.4 percent, postoperative complications occurred in 54 patients and the surgical recurrence rate was 26 percent. A favorable result was accomplished in 85 percent of the patients.  相似文献   

4.
5.
The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD) or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD). Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR) is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein–protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a particular disease signature that has a different impact on the systemic context.  相似文献   

6.
Mammalian cells respond in a variable manner when provided with physiological pulses of ligand, such as low concentrations of acetylcholine present for just tens of seconds or TNFα for just tens of minutes. For a two-pulse stimulation, some cells respond to both pulses, some do not respond, and yet others respond to only one or the other pulse. Are these different response patterns the result of the small number of ligands being able to only stochastically activate the pathway at random times or an output pattern from a deterministic algorithm responding differently to different stimulation intervals? If the response is deterministic in nature, what parameters determine whether a response is generated or skipped? To answer these questions, we developed a two-pulse test that utilizes different rest periods between stimulation pulses. This “rest-period test” revealed that cells skip responses predictably as the rest period is shortened. By combining these experimental results with a mathematical model of the pathway, we further obtained mechanistic insight into potential sources of response variability. Our analysis indicates that in both intracellular calcium and NFκB signaling, response variability is consistent with extrinsic noise (cell-to-cell variability in protein levels), a short-term memory of stimulation, and high Hill coefficient processes. Furthermore, these results support recent works that have emphasized the role of deterministic processes for explaining apparently stochastic cellular response variability and indicate that even weak stimulations likely guide mammalian cells to appropriate fates rather than leaving outcomes to chance. We envision that the rest-period test can be applied to other signaling pathways to extract mechanistic insight.  相似文献   

7.
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure''s fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete''s complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.Spirochetes are an ancient and extremely successful eubacterial phylum characterized by distinctive helical or planar wave-form morphology and flagellar filaments confined to the periplasmic space (55, 87). Spirochetes from the genera Leptospira, Treponema, and Borrelia are highly invasive pathogens that pose public health problems of global dimensions (1, 6, 57, 109). Treponema denticola and numerous other treponemal species, most of which remain uncultivated, are major components of the polymicrobial biofilms that cause periodontal disease (34, 56) and also have been implicated as risk factors for atherosclerosis (4, 125). The treponemal symbionts that dwell in the hindguts of termites, where they provide their insect host with essential nutrients (10), are one of the most striking examples of the extraordinary biodiversity achieved by spirochetes. It is readily apparent, therefore, that in the course of their complex evolution, spirochetes have exploited a basic ultrastructural plan to accommodate an immense spectrum of metabolic activities and lifestyles, both commensal and pathogenic.Venereal syphilis is a multistage, sexually transmitted disease caused by the noncultivatable spirochete Treponema pallidum. Following inoculation, usually in the genital region, T. pallidum disseminates via lymphatics and blood to diverse organs, where it can establish persistent, even life-long, infection (68, 97). Over the years there has been great interest in defining ultrastructural features of the syphilis spirochete that might contribute to syphilis pathogenesis (58, 64, 84, 120, 121). Classic electron microscopy studies established that T. pallidum possesses a characteristic spirochete ultrastructure consisting of outer and cytoplasmic membranes and periplasmic flagellar filaments originating from cytoplasmic membrane-associated, subterminal basal bodies (55, 58). Hovind-Hougen (58) identified a putative peptidoglycan (PG) layer surrounding the cytoplasmic membrane (CM), and she noted that the end of the bacterium contains a distinct structural entity which she speculated mediates polar attachment to mammalian cells and extracellular matrix components. Freeze-fracture analysis has shown that the T. pallidum outer membrane (OM) contains a lower density of membrane-spanning proteins than its counterparts in either gram-negative bacteria or cultivatable spirochetes (99, 118), and it is thought that the paucity of surface-exposed antigenic targets resulting from this unusual OM ultrastructure is an important element of the spirochete''s strategy for immune evasion (14, 93, 97).In the more than 10 years since the publication of the T. pallidum genomic sequence made available a much-needed parts list for the bacterium (44), we have learned comparatively little about how these components are organized to create this extremely virulent and immunoevasive pathogen. Cryo-electron tomography (CET) has emerged as a powerful methodology for bridging the gap between protein-protein interactions and cellular architecture (70, 71). With this technique, thin films of cells are vitreously frozen to preserve cell structure in a close-to-native state, thereby avoiding chemical fixation, dehydration, and staining artifacts typically associated with conventional electron microscopy (EM). A series of images acquired as the sample is progressively tilted in an electron microscope are used to generate a three-dimensional (3D) reconstruction of the intact cell. In recent years, investigators have used CET to examine a variety of eukaryotic and prokaryotic cell types (70, 73, 77). With respect to spirochetes, CET has been used to visualize the intact flagellar motors of Treponema primitia (79) and Borrelia burgdorferi (67, 72); novel internal and external structural features of T. denticola (60); Treponema primitia (80), B. burgdorferi (66), and Leptospira interrogans (74); the flat ribbon configuration of B. burgdorferi periplasmic flagella (18); and the defects created in B. burgdorferi OMs when organisms are incubated with a borreliacidal monoclonal antibody (69). In the present study, we used CET to examine the native cellular organization of T. pallidum. These analyses demonstrated, not surprisingly, that T. pallidum shares many structural features with T. denticola while, at the same time, calling attention to the fluidity and dynamism of the syphilis spirochete''s cell envelope. Our study also revealed that T. pallidum cell ends possess an unexpected degree of structural complexity and diversity compared to those of other spirochetes examined to date by CET. Lastly, our work has clarified the location of the PG layer within the periplasmic space and its spatial relationship to the motility apparatus, which are prerequisites for understanding spirochete movement and, by extension, invasiveness. As a whole, the information obtained underscores and clarifies fundamental differences in cell envelope composition and organization between T. pallidum, as well as other pathogenic spirochetes, and the model gram-negative bacterium, Escherichia coli.  相似文献   

8.
9.
Inflammatory bowel disease (IBD) is a common disease, includes Crohn''s disease (CD) and ulcerative colitis (UC), and is determined by altered gut bacterial populations and aberrant host immune response. Peptidoglycan recognition proteins (PGLYRP) are innate immunity bactericidal proteins expressed in the intestine. In mice, PGLYRPs modulate bacterial populations in the gut and sensitivity to experimentally induced UC. The role of PGLYRPs in humans with CD and/or UC has not been previously investigated. Here we tested the hypothesis that genetic variants in PGLYRP1, PGLYRP2, PGLYRP3 and PGLYRP4 genes associate with CD and/or UC and with gender and/or age of onset of disease in the patient population. We sequenced all PGLYRP exons in 372 CD patients, 77 UC patients, 265 population controls, 210 familial CD controls, and 24 familial UC controls, identified all polymorphisms in these populations, and analyzed the variants for significant association with CD and UC. We identified 16 polymorphisms in the four PGLYRP genes that significantly associated with CD, UC, and/or subgroups of patient populations. Of the 16, 5 significantly associated with both CD and UC, 6 with CD, and 5 with UC. 12 significant variants result in amino acid substitutions and based on structural modeling several of these missense variants may have structural and/or functional consequences for PGLYRP proteins. Our data demonstrate that genetic variants in PGLYRP genes associate with CD and UC and may provide a novel insight into the mechanism of pathogenesis of IBD.  相似文献   

10.
The completion of the Human Genome Project provided a reference sequence to which researchers could compare sequences from individual patients in the hope of identifying disease-causing mutations. However, this still necessitated candidate gene testing or a very limited screen of multiple genes using Sanger sequencing. With the advent of high-throughput Sanger sequencing, it became possible to screen hundreds of patients for alterations in hundreds of genes. This process was time consuming and limited to a few locations/institutions that had the space to house tens of sequencing equipment. The development of next generation sequencing revolutionized the process. It is now feasible to sequence the entire exome of multiple individuals in about 10 days. However, this meant that a massive amount of data needed to be filtered to identify the relevant alteration. This is presently the rate-limiting step in providing a convincing association between a genetic alteration and a human disorder.  相似文献   

11.
Granulysin (GNLY) is found in cytotoxic granules of cytolytic T lymphocytes and natural killer (NK) cells, which are critical for hepatitis B virus (HBV) clearance. GNLY cytotoxicity plays an important role in the defense against viruses or intracellular bacteria. We hypothesized that genetic variation in the GNLY gene could affect the resistance of hosts against HBV infection. We compared the distribution frequencies of GNLY polymorphisms between an HBV-induced chronic liver disease (CLD) group and a spontaneous recovery (SR) control group to determine whether GNLY polymorphisms play a role in HBV clearance. A total of 117 patients in the SR group and 230 patients in the CLD group were enrolled. Samples derived from complex infections, including hepatitis C and human immunodeficiency virus, and those associated with insufficient clinical information (10 samples in SR and 24 samples in CLD) were excluded from the study. The final analysis included 107 SR and 206 CLD samples. DNA was extracted from peripheral blood, and GNLY genotypes were determined by the GoldenGate(?) method. The genotype distribution of the single-nucleotide polymorphisms (SNPs) rs2886767 (C>T), rs1561285 (G>C), and rs11127 (T>C) were significantly different between the SR and CLD groups in a recessive model (p<0.015). These three SNPs were in a complete linkage disequilibrium (LD) block. Diplotype distributions of haplotype (HT) 1 (C-G-T) and HT2 (T-C-C) were significantly different between the SR and CLD groups in a recessive model (p=0.025) and a dominant model (p=0.008). All p-values remained significant after multiple comparisons. GNLY polymorphism genotypes and diplotypes were associated with the chronicity of HBV. These data suggested that genetic variation of GNLY may be an important factor in HBV clearance through the CD8+ T or NK cell-mediated removal of HBV-infected cells from the host.  相似文献   

12.

Background

Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.

Methods

We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT), to identify protein-coding gene association with 14 cardiometabolic (CMD) related traits across 6 publicly available genome wide association (GWA) meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.

Results

We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.

Conclusions

We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and adds significant value with respect to its potential for identifying multiple novel and clinically relevant trait associations.  相似文献   

13.
Genome-wide association studies (GWASs) have already identified at least 22 common susceptibility loci associated with an increased risk of colorectal cancer (CRC). This study examined the relationship between these single nucleotide polymorphisms (SNPs) and the clinical outcomes of patients with colorectal cancer. Seven hundred seventy-six patients with surgically resected colorectal adenocarcinoma were enrolled in the present study. Twenty-two of the GWAS-identified SNPs were genotyped using a Sequenom MassARRAY. Among the 22 SNPs, two (rs1321311G>T in CDKN1A and rs10411210C>T in RHPN2) were significantly associated with the survival outcomes of CRC in a multivariate survival analysis. In a recessive model, the rs1321311 TT genotype (vs. GG + GT) and rs10411210 TT genotype (vs. CC + CT) were associated with a worse prognosis for disease-free survival (adjusted HR = 1.90; 95% confidence interval = 1.00-3.60; P = 0.050, adjusted HR = 1.94; 95% confidence interval = 1.05-3.57; P = 0.034, respectively) and overall survival (adjusted HR = 2.05; 95% confidence interval = 1.00-4.20; P = 0.049, adjusted HR = 2.06; 95% confidence interval = 1.05-4.05; P = 0.036, respectively). None of the other SNPs was significantly associated with any clinicopathologic features or survival. The present results suggest that the genetic variants of the CDKN1A (rs1321311) and RHPN2 (rs10411210) genes can be used as prognostic biomarkers for patients with surgically resected colorectal cancer.  相似文献   

14.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

15.
16.

Background/Objective

In Japanese populations, we performed a replication study of genetic loci previously identified in European-descent populations as being associated with lipid levels and risk of coronary artery disease (CAD).

Methods

We genotyped 48 single nucleotide polymorphisms (SNPs) from 22 candidate loci that had previously been identified by genome-wide association (GWA) meta-analyses for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and/or triglycerides in Europeans. We selected 22 loci with 2 parallel tracks from 95 reported loci: 16 significant loci (p<1×10−30 in Europeans) and 6 other loci including those with suggestive evidence of lipid associations in 1292 GWA-scanned Japanese samples. Genotyping was done in 4990 general population samples, and 1347 CAD cases and 1337 controls. For 9 SNPs, we further examined CAD associations in an additional panel of 3052 CAD cases and 6335 controls.

Principal Findings

Significant lipid associations (one-tailed p<0.05) were replicated for 18 of 22 loci in Japanese samples, with significant inter-ethnic heterogeneity at 4 loci–APOB, APOE-C1, CETP, and APOA5–and allelic heterogeneity. The strongest association was detected at APOE rs7412 for LDL-C (p = 1.3×10−41), CETP rs3764261 for HDL-C (p = 5.2×10−24), and APOA5 rs662799 for triglycerides (p = 5.8×10−54). CAD association was replicated and/or verified for 4 loci: SORT1 rs611917 (p = 1.7×10−8), APOA5 rs662799 (p = 0.0014), LDLR rs1433099 (p = 2.1×10−7), and APOE rs7412 (p = 6.1×10−13).

Conclusions

Our results confirm that most of the tested lipid loci are associated with lipid traits in the Japanese, further indicating that in genetic susceptibility to lipid levels and CAD, the related metabolic pathways are largely common across the populations, while causal variants at individual loci can be population-specific.  相似文献   

17.
18.

Background

Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug''s chemical structure and a bacterium''s cellular network affect the types of mutations acquired.

Methodology/Principal Findings

To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli''s intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.

Conclusions/Significance

Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.  相似文献   

19.
《PloS one》2013,8(4)
Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2 = 25%, h2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10−5 were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.  相似文献   

20.
ObjectiveOwing to limited research, the effect of nonalcoholic fatty liver disease (NAFLD) on type 2 diabetes outcomes remains unclear. This study aimed to investigate the association between NAFLD and microvascular complications in hospitalized patients with type 2 diabetes.MethodsWe included 1982 patients with type 2 diabetes. NAFLD was defined as hepatic steatosis detected by ultrasound without secondary causes of fat accumulation. The diagnosis of diabetic retinopathy (DR), diabetic kidney disease (DKD), and diabetic neuropathy was based on clinical medical records. Risk for advanced liver fibrosis was categorized as “low risk,” “indeterminate risk,” and “high risk,” based on the NAFLD fibrosis score (NAFLD-FS). Logistic regression was used to test the association between NAFLD, risk for advanced fibrosis, and the presence of DR, DKD, and diabetic neuropathy.ResultsThe prevalence of NAFLD was 61.3%. The presence of DR and DKD was inversely associated with NAFLD, after adjusting for covariates. The presence of DR and DKD was higher in the “indeterminate risk” and “high risk” groups than in the “low risk” group, after adjusting for the same covariates. Only the presence of DKD significantly increased with high NAFLD-FS.ConclusionThe presence of DR and DKD was inversely associated with NAFLD among hospitalized patients with type 2 diabetes. DKD was closely associated with high NAFLD-FS among patients with NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号