首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extracellular mucilage from Beijerinckia mobilis, a member of the Azotobacteriaceae, after removal of contaminating protein, was separated into a neutral polysaccharide (N-2, 10%); a neutral, dialysable fraction (N-1, 5%), consisting of glucose and oligosaccharides containing glucose, arabinose, and rhamnose; and an acidic polysaccharide (85%). N-2 (mol. wt, 1900) was highly branched and comprised glucopyranose, mannopyranose, and arabinofuranose residues (1:1:1). The various linkages were determined. The acid fraction was a polymer of high molecular weight composed of L-guluronic acid (65%), D-glucose (15%), and D-glycero-D-mannoheptose (20%), together with acetic and pyruvic acids. From the results of methylation, periodate oxidation, and partial hydrolysis, a branched molecule with a backbone of guluronic acid and heptose, and side chains of glucose and guluronic acid is proposed. Pyruvic acid was found to be acetal-linked to 2?5% of the heptose residues. The similarities between this polysaccharide and that from the related species Azotobacter indicum are discussed.  相似文献   

2.
The structures of extracellular, acidic polysaccharides from three non-nodulating rhizobia, Rhizobium trifolii AHU 1134, Rhizobium phaseoli AHU 1133, and Rhizobium lupini KLU were studied by a method involving successive fragmentation with specific two β-d-glycanases of Flavobacterium M64. These three polysaccharides are composed of repeating units of the octassacharide shown. Half of the terminal d-galactose residues are substituted by pyruvic acid acetal groups.
  相似文献   

3.
《Carbohydrate research》1987,161(1):127-132
The structure of an extracellular polysaccharide, S-198, elaborated by Alcaligenes ATCC 31853 has been investigated; methylation analysis, specific degradations, and 1H-n.m.r. spectroscopy were the main methods used. It is suggested that the polysaccharide is composed of “repeating units” with the structure
A sugar residue in the chain may be either L-rhamnose or L-mannose and only ≈50% of the residues contain the branching α-L-rhamnopyranosyl group. The polysaccharide further contains O-acryl groups. It belongs to a group of polysaccharides, elaborated by Alcaligenes and Pseudomonas species, which all have the same linear backbone (except that some of them do not contain L-mannose) without branching or with branches that differ in their chemical structures and/or positions.  相似文献   

4.
The structure of gellan gum, a polysaccharide of potential commercial usefulness elaborated by Pseudomonas elodea, has been investigated. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the following structure.
Of the repeating units, ~25% contain an O-acetyl group linked to C-6 of one of the β-d-glucopyranosyl residues.  相似文献   

5.
The capsular polysaccharide from a new capsular serotype of Klebsiella, K21b, has been investigated, using n.m.r. spectroscopy, methylation analysis, and specific degradations as the main methods. It is concluded that the polysaccharide is composed of pentasaccharide repeating-units having the following structure. (formula; see text)  相似文献   

6.
The extracellular, acidic heteropolysaccharide from Xanthomonas S19 consists of D-glucuronic acid, D-glucose, D-galactose, and D-mannose residues in the approximate molar ratios of 1.6:3:1:1, plus acetyl groups liked to C-2 and/or C-3 of a large proportion of the glucose residues. Methylation studies showed that the glucose is present as non-reducing end-group also as 1,2- and 1,4-linked units, the galactose residues are solely 1,3-linked, a major proportion of the mannose residues are 1,2,4-linked and the rest 1,2-linked. A high proportion of the glucuronic acid units are 1,4-linked. Periodate oxidation confirmed the presence of these linkages. The disaccharides D-Glc-(1→4)-D-Glc,D-Glc-(1→2)-D-Man, D-Glc-(1→3)-D-Gal, D-Gal-(1→2)-D-Glc, D-GlcA-(1→4)-D-GlcA, and β-D-GlcA-(1→4)-D-Man were isolated from a partial hydrolysate of the polysaccharide, and characterised. The similarities and differences between this polysaccharide and those from other Xanthomonas species are discussed.  相似文献   

7.
The structure of the capsular polysaccharide elaborated by Haemophilus influenzae type d has been investigated, methylation analysis and n.m.r. spectrometry being the principal methods used. It is concluded that the polysaccharide is composed of repeating units having the structure: →4)-β-d-GlcpNAc-(1→3)-β-d-ManpNAcA-(1→. In addition, single residues of l-alanine, l-serine, or l-threonine, in the proportions 2:2:1, are linked, through their amino groups, to C-6 of the 2-acetamido-2-deoxy-β-d-mannopyranosyluronic acid residues. The degree of substitution (75-85%) varies for different preparations.  相似文献   

8.
This study reports structural information on extracellular, water-soluble polysaccharides from 5 different strains of Rhizobium, viz. R. trifolii J60, R. meliloti J1017, 202, 204 and 207. All the 5 polysaccharides had glucose and galactose in approximate molar ratio of 7:1. Methylation analysis revealed that the polysaccharides contained (1 leads to 3), (1 leads to 6), (1 leads to 4), (1 leads to 4, 1 leads to 6)-linked D-glucose residues, (1 leads to 3)-linked D-galactose and non-reducing terminal D-glucose attached to pyruvate. This structure was found to be exactly the same as that of succinoglycan, a succinic acid containing water-soluble polysaccharide elaborated by Alcaligenes faecalis var. myxogenes 10C3. The similarity of the structure of polysaccharides of two different Rhizobium species and also to the polysaccharide produced by Alcaligenes are discussed in terms of host specificity.  相似文献   

9.
Each of the serologically related, title strains produced extracellular polysaccharides that were mixtures of an acidic polysaccharide and smaller proportions of a glucan. These were separated by column chromatography and the structures of the acidic polysaccharides investigated by alkylation, specific sequential degradation, and periodate oxidation in conjunction with 1H-n.m.r. spectroscopy. The polysaccharides from the three strains appear to be identical rhamno-4-O-methyl-glucuronans, having the following tetrasaccharide repeating-unit.
The molecular weight of the polysaccharides of strains CC708 and CB1795 was of the order of 65,000–70,000.  相似文献   

10.
Caulobacters are adherent prosthecate bacteria that are members of bacterial biofouling communities in many environments. Investigation of the cell surface carbohydrates produced by two strains of the freshwater Caulobacter crescentus, CB2A and CB15A, revealed a hitherto undetected extracellular polysaccharide (EPS) or capsule. Isolation and characterization of the EPS fractions showed that each strain produced a unique neutral EPS which could not be readily removed from the cell surface by washing. Monosaccharide analysis showed that the main CB2A EPS contained D-glucose, D-gulose, and D-fucose in a ratio of 3:1:1, whereas the CB15A EPS fraction contained D-galactose, D-glucose, D-mannose, and D-fucose in approximately equal amounts. Methylation analysis of the main CB2A EPS showed the presence of terminal glucose and gulose groups, 3-linked fucosyl, and two 3,4-linked glucosyl units, thus confirming the pentasaccharide repeating unit indicated by 1H nuclear magnetic resonance analysis. Similar studies of the CB15A EPS revealed a tetrasaccharide repeating unit consisting of terminal galactose, 4-linked fucosyl, 3-linked glucosyl, and 3,4-linked mannosyl residues. EPS was not detectable by thin-section electron microscopy techniques, including some methods designed to preserve or enhance capsules, nor was the EPS readily detected on the cell surface by scanning electron microscopy when conventional fixation techniques were used; however, a structure consistent with EPS was revealed when samples were prepared by cryofixation and freeze-substitution methods.  相似文献   

11.
12.
13.
Two extracellular polysaccharides, ENP1 and ENP2, were isolated from the fermentation liquid of the marine fungus Epicoccum nigrum JJY-40 by anion-exchange chromatography and gel-filtration chromatography, and their structures were investigated using chemical and spectroscopic methods including methylation analysis and NMR spectroscopy. The results demonstrated that ENP1 was composed of mannose, glucose, and galactose in the molar ratio of 5.0:2.1:1.0, and the main chain of the polysaccharide consisted of (1?→?2)-linked mannose, (1?→?3)-linked mannose, terminal mannose, (1?→?6)-linked glucose, (1?→?4)-linked glucose, and (1?→?4)-linked galactose. ENP2 was composed of mannose, galactose, glucose, and glucuronic acid in a molar ratio of 12.4:11.2:8.3:1.0, and its glycosidic linkage patterns included terminal mannose, (1?→?6)-linked glucose, (1?→?4)-linked galactose, and (1?→?3)-linked mannose. The two polysaccharides had a partially branched structure with branch point located at C-3 position of (1?→?6)-linked glucose residue. The molecular weights of ENP1 and ENP2 were 19.2 kDa and 32.7 kDa, respectively. Antioxidant properties of the two polysaccharides were evaluated with hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and lipid peroxidation inhibition in vitro, and results showed that ENP2 and ENP1 had good antioxidant activities, especially ENP2. ENP2 could be effective as a potential antioxidant.  相似文献   

14.
15.
The mucilaginous jelly from the leaves of Aloe vera is composed of at least four different partially acetylated glucomannans that differ in their glucose-to-mannose ratios and acetyl contents. Methylation and periodate-oxidation studies indicate that the glucomannans are linear polymers containing (1→4)-glycosidic linkages.  相似文献   

16.
The extracellular polysaccharides of seven strains of Rhizobium japonicum were investigated by using a gas-chromatographic scheme developed for determination of the various sugars present. These polysaccharides were more heterogeneous in their composition than those of any other species of Rhizobium yet examined. Five strains (1809, 110, 123, 127, and 709) produced polysaccharides containing the same constituents, although in varying relative amounts: glucose (36–44%), galactose (7–25%), mannose (18–20%), 4-O-methylgalactose (5–13%), galacturonic acid (12–16%), and acetyl groups (4–8%). The sugars of the polysaccharide of strain 1809 were all of the d series. These are the first bacterial polysaccharides reported to contain 4-O-methylgalactose and the first Rhizobium polysaccharides in which galacturonic acid has been found. In contrast to this, the polysaccharide of strain 129 consisted of glucose (7%), galactose (51%), mannose (5%), xylose (5%), glucuronic acid (5%), and pyruvic acid (2%). The polysaccharide of strain 711 contained glucose (34%), galactose (13%), mannose (27%), and pyruvic acid (6%).  相似文献   

17.
Several extracellular glucans have been isolated from Phytophthora parasitica Dastur, a phytopathogenic fungus of the carnation. These polysaccharides consist of a mixture of (1-->3)(1-->6)-beta-D-glucans whose molecular masses varied from 1 x 10(4) to 5 x 10(6) Da. All of these polysaccharides have a main chain of beta-(1-->3)-linked D-glucose residues substituted with mono-, di- and oligo-saccharidic chains attached through (1-->6) linkages.  相似文献   

18.
The structure of the extracellular polysaccharide of Rhizobium trifolii has been investigated. Methylation analysis, sequential degradations by oxidation and elimination of oxidized residues, uronic acid degradation, and degradation by oxidation of the acetylated polysaccharide with chromium trioxide in acetic acid were the main methods used. It is proposed that the polysaccharide is composed of heptasaccharide repeating-units having the following structure:
An unusual feature is that some of the repeating units are incomplete and lack the terminal β-d-galactopyranosyl group. The polysaccharide contains O-acetyl groups (somewhat more than 1 mol. per unit), linked to O-2 and O-3 of 4-O-substituted d-glucopyranosyl chain-residues. A previous finding that the polysaccharide contains 2-deoxy-d-arabino-hexose (2-deoxy-d-glucose) residues is erroneous.  相似文献   

19.
The valuable polyunsaturated fatty acid, docosahexaenoic acid, can be produced by cultivation of the heterotrophic microalga, Crypthecodinium cohnii. During batch growth of C. cohnii on glucose, sea salt and yeast extract for 5 days, so far unreported extracellular polysaccharides were produced. These caused an increased viscosity and a strong drop in the maximum oxygen transfer. The viscosity increased most markedly as cells entered the stationary phase. The polysaccharides varied in size (from 6 kDa to >1,660 kDa) and monomer distribution. A high molecular mass fraction (from 100 kDa to >1,660 kDa) and a medium molecular mass fraction (6-48 kDa) were prepared. The high molecular mass fraction contained (on a molar basis) 71.7% glucose, 13.1% galactose and 3.8% mannose, whereas the medium molecular mass fraction contained 37.7% glucose, 19.8% galactose and 28.1% mannose. Other monomers present in both fractions were fucose, uronic acid and xylose. Monomers were coupled mainly via alpha-(1-3) links. Increased viscosity due to polysaccharide production complicates the development of commercial, high cell-density processes for the production of docosahexaenoic acid.  相似文献   

20.
An extracellular membranous structure is synthesized by an embryonal carcinoma-derived cell line, M1536-B3, in suspension cultures. Analysis of the solubilized membranous structure on polyacrylamide gels in sodium dodecyl sulfate yielded two major classes of glycoproteins with molecular weights of approximately 230,000 and 320,000 respectively. The amino acid composition of the purified membranous structures revealed the absence of both hydroxyproline and hydroxylysine. Carbohydrate analysis demonstrated the presence of fucose, xylose, mannose, galactose, glucose, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylneuraminic acid. These carbohydrates represented approximately 9% of the weight of the membrane. A comparison of the electrophoretic patterns of cells grown on monolayers and in suspension revealed a marked accumulation of the glycoproteins under the latter growth conditions. D-[3H]-glucosamine was incorporated into these two and a third major glycoprotein by cells in suspension culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号