首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Enterococcus faecalis makes ATP from agmatine in three steps catalyzed by agmatine deiminase (AgDI), putrescine transcarbamylase (PTC), and carbamate kinase (CK). An antiporter exchanges putrescine for agmatine. We have cloned the E. faecalis ef0732 and ef0734 genes of the reported gene cluster for agmatine catabolism, overexpressed them in Escherichia coli, purified the products, characterized them functionally as PTC and AgDI, and crystallized and X-ray diffracted them. The 1.65-Angstroms-resolution structure of AgDI forming a covalent adduct with an agmatine-derived amidine reactional intermediate is described. We provide definitive identification of the gene cluster for agmatine catabolism and confirm that ornithine is a genuine but poor PTC substrate, suggesting that PTC (found here to be trimeric) evolved from ornithine transcarbamylase. N-(Phosphonoacetyl)-putrescine was prepared and shown to strongly (K(i) = 10 nM) and selectively inhibit PTC and to improve PTC crystallization. We find that E. faecalis AgDI, which is committed to ATP generation, closely resembles the AgDIs involved in making polyamines, suggesting the recruitment of a polyamine-synthesizing AgDI into the AgDI pathway. The arginine deiminase (ADI) pathway of arginine catabolism probably supplied the genes for PTC and CK but not those for the agmatine/putrescine antiporter, and thus the AgDI and ADI pathways are not related by a single "en bloc" duplication event. The AgDI crystal structure reveals a tetramer with a five-blade propeller subunit fold, proves that AgDI closely resembles ADI despite a lack of sequence identity, and explains substrate affinity, selectivity, and Cys357-mediated-covalent catalysis. A three-tongued agmatine-triggered gating opens or blocks access to the active center.  相似文献   

2.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

3.
4.
5.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

6.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

7.
低温胁迫对建兰叶片内源多胺含量的影响   总被引:1,自引:0,他引:1  
以素心建兰为材料,研究低温胁迫(5℃)对建兰内源多胺含量的影响。结果表明,在低温胁迫下建兰生长期的叶片多胺(PAs)总量和亚精胺(Spd)、腐胺(Put)含量都表现为先升后降的变化,精胺(Spm)含量则是下降然后上升最后稳定在比原来含量更高的水平上,说明有可能在低温胁迫下建兰通过调节内源多胺的总量和不同多胺种类的比例来抵御低温对生理的破坏作用;开花期的建兰叶片因受低温胁迫的影响未能合成足够的亚精胺(Spd),从而抑制了建兰的开花。  相似文献   

8.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

9.
The earliest studies concerning polyamines (PAs) in plants were performed by using in vitro cultured explants of Helianthus tuberosus dormant tuber. This parenchyma tissue was particularly useful due to its susceptibility to several growth substances, including PAs. During tuber dormancy, PA levels are too low to sustain cell division; thus Helianthus represents a natural PA-deficient model. When cultivated in vitro in the presence of auxins, Helianthus tuber dormant parenchyma cells at the G0 stage start to divide synchronously acquiring meristematic characteristics. The requirement for auxins to induce cell division can be substituted by aliphatic PAs such as putrescine, spermidine or spermine. Cylinders or slices of explanted homogeneous tuber parenchyma were cultured in liquid medium for short-term studies on the cell cycle, or on solid agar medium for long-term experiments. Morphological and physiological modifications of synchronously dividing cells were studied during the different phases of the cell cycle in relation to PAs biosynthesis and oxidation. Long-term experiments led to the identification of the PAs as plant growth regulators, as the sole nitrogen source, as tuber storage substances and as essential factors for morphogenetic processes and cell homeostasis. More recently this system was used to study the effects on plant cell proliferation of platinum- or palladium-derived drugs (cisplatin and platinum or palladium bi-substituted spermine) that are used in human cancer cell lines as antiproliferative and cytotoxic agents. Cisplatin was the most active both in cell proliferation inhibition and on PA metabolism. Similar experiments were performed using three agmatine analogous. Different effects of these compounds were observed on cell proliferation, free PA levels and enzyme activities, leading to a hypothesis of a correlation between their chemical structure and the agmatine metabolism in plants.  相似文献   

10.
Effects of diamines, polyamines, and other basic amino acidson the growth of lettuce hypocotyls were investigated. Putrescine,cadaverine and agmatine enhanced the hypocotyl growth in thepresence of gibberellin, while spermidine and spermine werenon-effective. Arginine and ornithine, which may be precursorsof putrescine, had similar effect. While the growth inhibitiondue to arcaine (1,4-diguanidinobutane), which is a agmatineiminohydrolase inhibitor, was recovered by agmatine, cadaverine,putrescine, and spermidine, putrescine most effectively recoveredits growth-enhancing effect. (Received August 25, 1982; Accepted December 27, 1982)  相似文献   

11.
Influence of ladder concentration of nickel (Ni) on the leaves of Hydrocharis dubia were studied after 3 days treatment. The accumulation of Ni, the content of polyamines, proline, malondialdehyde (MDA) and soluble protein, as well as the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves were investigated. The result indicated that the toxicity of Ni manifested in respective aspect of physiological and biochemical characters. Significant increase of Ni concentration in the leaf tissue was observed, which was concentration dependent. Visible symptoms of Ni toxicity: chlorosis and necrosis occurred following the 3rd day. Meantime, treatment with Ni resulted in the increase in the generation rate of O2•− in the leaves. SOD and CAT activities decreased significantly in response to Ni treatment, it was possibly the reason of accumulation of O2•−. However, a several-fold decrease in POD activities was found. Our results indicated that because of prolonged increases in O2•− level, oxidative damage, measured as the level of lipid peroxidation, occured in the leaves of Ni treated fronds. The changes of the content of polyamines (PAs) were also investigated in the leaves of Hydrocharis dubia. Ni treatment significantly increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby significantly reducing the ratio of free (Spd + Spm)/Put in leaves, which has been considered as the signal under stress. Although the trend that PS-conjugated PAs and PIS-bound PAs changed the same as free PAs, they changed in more less extent.  相似文献   

12.
Polyamine biosynthesis in senescing leaves of Avena sativa L. was measured by determining the activities of arginine decarboxylase (EC 4.1.1.19), ornithine decarboxylase (EC 4.1.1.17) and S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). Polyamine content was also estimated by thin layer chromatography and high performance liquid chromatography. Arginine decarboxylase activity decreases progressively in aging attached first leaves and in senescing excised leaves in the dark. Conversely, it increases during light exposure of excised leaves, which retards senescence. Ornithine decarboxylase activity is high and constant in the attached leaf, irrespective of age; it decreases in excised leaves kept in the dark and in the light, irrespective of senescence. S-Adenosyl-l-methionine decarboxylase shows no correlation with age or senescence. Levels of putrescine, diaminopropane, agmatine, and spermidine are high in young leaves and decline with age. The best single indicator of senescence is usually spermidine, which decreases in excised leaves incubated in the dark, but increases in such leaves with time of light exposure. Spermidine generally has a reciprocal relationship with putrescine, indicating that spermidine synthase, which converts putrescine to spermidine, may exert important physiological control. These data support the view that polyamines play an important role in the regulation of plant development.  相似文献   

13.
In this study, we examined the regulation by putrescine, spermidine and spermine of nitric oxide (NO) biosynthesis in Arabidopsis thaliana seedlings. Using a fluorimetric method employing the cell-impermeable NO-binding dye diaminorhodamine-4M (DAR-4M), we observed that the polyamines (PAs) spermidine and spermine greatly increased NO release in the seedlings, whereas arginine and putrescine had little or no effect. Spermine, the most active PA, stimulated NO release with no apparent lag phase. The response was quenched by addition of 2-aminoethyl-2-thiopseudourea (AET), an inhibitor of the animal nitric oxide synthase (NOS) and plant NO biosynthesis, and by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO), an NO scavenger. By fluorescence microscopy, using the cell-permeable NO-binding dye diaminorhodamine-4M acetoxymethyl ester (DAR-4M AM), we observed that PAs induced NO biosynthesis in specific tissues in Arabidopsis seedlings. Spermine and spermidine increased NO biosynthesis in the elongation zone of the Arabidopsis root tip and in primary leaves, especially in the veins and trichomes, while in cotyledons little or no effect of PAs beyond the endogenous levels of NO-induced fluorescence was observed. We conclude that PAs induce NO biosynthesis in plants.  相似文献   

14.
以4个不同基因型的节瓜为材料,通过两个发育时期(10、19片叶展平)茎尖取样,研究了多胺(PA)含量和比值与植株花性别分化的关系。结果表明,节瓜茎尖4种多胺含量差异显著,两个取样时期都是亚精胺(Spd)〉腐胺(Put)〉尸胺(Cad)〉精胺(Spm)。10片叶展平时期多胺含量与节瓜花性别分化之间没有明确的相关性;19片叶展平时期,节瓜茎尖Put、Spd和多胺总量与植株雌花分化比例呈极显著的正相关,而Cad则与雌花分化比例呈极显著的负相关。在两个取样时期,复合指标Spd/PA都与植株雌花分化比例呈显著的正相关,而(Put+Cad)/(Spd+Spm)均与之呈显著的负相关,可以较好地预测节瓜的花性别分化状况。  相似文献   

15.
Exogenous polyamines enhance copper tolerance of Nymphoides peltatum   总被引:2,自引:0,他引:2  
Wang X  Shi G  Xu Q  Hu J 《Journal of plant physiology》2007,164(8):1062-1070
The protective effects of polyamines (PAs) against copper (Cu) toxicity were investigated in the leaves of Nymphoides peltatum. Cu treatment increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put ratio in leaves. Exogenous application of Spd or Spm markedly reversed these Cu-induced effects for all three PAs and partially restored the (Spd+Spm)/Put ratio in leaves. It also significantly enhanced the level of proline, retarded the loss of soluble protein, decreased the rate of O2*- generation and H2O2 content, and prevented Cu-induced lipid peroxidation. Furthermore, exogenous Spd and Spm reduced the accumulation of Cu and effectively maintained the balance of nutrient elements in plant leaves under Cu stress. These results suggest that exogenous application of Spd or Spm can enhance the tolerance of N. peltatum to Cu by increasing the levels of endogenous Spd and Spm as well as the (Spd+Spm)/Put ratio.  相似文献   

16.
120mmol·L^-1NaCl胁迫30d,耐盐性强的‘金丝小枣’叶片细胞质膜、液泡膜共价结合态腐胺(Put)、亚精胺(Spd)、精胺(Spm)含量及多胺(PAs)总水平与对照无显著性差异,但耐盐性弱的‘冬枣’叶片质膜共价结合态Put、Spd、Spm含量和PAs总水平及液泡膜Spd含量均显著降低;‘金丝小枣’叶片类囊体膜共价结合态Put含量、PAs总水平较对照显著降低,‘冬枣’则是Put、Spd、Spm含量及PAs总水平均显著降低。盐胁迫下,‘金丝小枣’叶片细胞质膜、液泡膜、类囊体膜非共价结合态Put、Spd、Spm含量及PAs总水平下降,但其中仅类囊体膜Spd含量显著低于对照,而‘冬枣’的3种膜上非共价结合态的这些多胺及其总水平均显著低于对照。与对照相比,盐胁迫下耐盐性不同的2个枣品种,叶片细胞质膜、液泡膜和类囊体膜H+-ATP酶活性均降低,但降低幅度因枣品种和生物膜种类不同而异,且H+-ATP酶活性与相应膜结合态多胺水平存在极紧密的正相关关系。结果表明,膜结合态多胺参与枣品种耐盐性的表达,调节盐胁迫下枣叶细胞中溶质的跨膜运输。  相似文献   

17.
18.
The composition of polyamines is studied for the first time in representatives of the genus Micrococcus and taxon "conglomeratus", strains Staphylococcus aureus CCM 209, Deinococcus erythromyxa CCM 706 as well as of Erwinia carotovora ATCC 15713 polyamines, which are not extracted by perchloric acid. Considerable amounts of spermine and rarely of spermidine are revealed in cells of Gram positive microorganisms, that differs them from Gram negative bacteria possessing high concentrations of putrescine, spermidine and their derivatives. A procedure is developed for detection of polyamines in cells of Gram positive microorganisms. It is recommended to use the hydrolysis of their cells by 6N HCl for 4 at 120 degrees C or for 8-10h at 100 degrees C with the subsequent electrophoretic separation. Putrescine, as well as comparable with it amount of agmatine and spermidine traces are found in Erwinia carotovora ATCC 15713 cell hydrolyzates, whereas putrescine and agmatine traces are found in perchloric extracts of intact cells. Spermine is not observed in the cells. The binding of polyamines with biopolymers of cells of Gram positive bacteria and their difference by the given character from the Gram negative procaryotes are under discussion.  相似文献   

19.
The main free amines identified during growth and development of rice seedlings were agmatine, putrescine, spermidine, diaminopropane and tyramine. Amine composition differed according to tissue and stages of development. Conjugated amines were only found in roots. We present evidence that arginine decarboxylase (ADC) regulates putrescine during the development of rice seedlings. When ADC action was blocked by DFMA (-DL-difluoromethylarginine, a specific irreversible inhibitor of ADC), polyamine titers and seedling development were diminished; when agmatine or putrescine was added, normal polyamine titers and growth were restored. The effects of DFMA were concentration dependent. DFMO (-DL-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase or ODC) promoted growth and development at concentrations below 2 mM. This effect was probably related to its unexplained, but consistently observed slight enhancement of rice ADC. When the increase in the concentration of spermidine was prevented by CHA (cyclohexylammonium sulfate), the number of roots increased and the increase in length of leaves and roots was strongly inhibited. The addition of exogenous spermidine at the time of treatment with CHA reversed the inhibition by CHA.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - CHA cyclohexylammonium sulfate  相似文献   

20.

Background

Long-stemmed and semi-dwarf cultivars of triticale were exposed to water stress at tillering, heading and anthesis stage. Quantitative determination of free and cell wall-bound polyamines, i.e. agmatine, cadaverine, putrescine, spermidine and spermine, was supplemented with an analysis of quantitative relationships between free and cell wall-bound polyamines.

Results

The content of free and cell wall-bound polyamines varied depending on the development stage, both under optimal and water stress conditions. Drought-induced increase in free agmatine content was observed at all developmental stages in long-stemmed cultivar. A depletion of spermidine and putrescine was also reported in this cultivar, and spermidine was less abundant in semi-dwarf cultivar exposed to drought stress at the three analyzed developmental stages. Changes in the content of the other free polyamines did not follow a steady pattern reflecting the developmental stages. On the contrary, the content of cell wall-bound polyamines gradually increased from tillering, through heading and until anthesis period.

Conclusion

Water stress seemed to induce a progressive decrease in the content of free polyamines and an accumulation of cell wall-bound polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号