首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

2.
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.  相似文献   

3.
4.
5.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

6.
Leaf senescence results in the recycling of nutrients, thereby providing resources required for growth and reproduction. In this study, the effect of day-length on leaf senescence in eight different Arabidopsis thaliana ecotypes was determined and the relationship between senescence and other morphological and life history traits was analysed. A significant variation in the start and extent of leaf senescence depending on the genetic background and the response to day-length was found. Whereas senescence of early flowering ecotypes was accelerated by long days, no effect of day-length on senescence could be found in late flowering Kas-1 plants. Senescence in the different ecotypes was associated with other traits, such as floral transition, the total number of fruits, the total number of leaves and the maximum chlorophyll content. Plants that bolted early also senesced early, produced fewer leaves, accumulated less chlorophyll, but produced more fruits. The present results indicate that senescence may be a key component in the trade-off between investment in photosynthetic capacity and reproduction. The relationship between senescence and other traits was maintained independent of whether differences in senescence were caused by genetic (ecotype) or environmental (day-length) variation, suggesting that genetic and environmental factors affect these traits through common regulatory pathways.  相似文献   

7.
Leaf senescence is a developmentally regulated process that contributes to nutrient redistribution during reproductive growth and finally leads to tissue death. Manipulating leaf senescence through breeding or genetic engineering may help to improve important agronomic traits, such as crop yield and the storage life of harvested organs. Here, we studied natural variations in the regulation of plant senescence among 16 Arabidopsis thaliana accessions. Chlorophyll content and the proportion of yellow leaves were used as indicator parameters to determine leaf and plant senescence respectively. Our study indicated significant genotype effects on the onset and development of senescence. We selected three late- and five early-senescence accessions for further physiological studies. The relationship between leaf and plant senescence was accession-dependent. There was a significant correlation between plant senescence and the total number of leaves, siliques and plant bolting age. We monitored expression of two senescence marker genes, SAG12 and WRKY53 , to evaluate progression of senescence. Our data revealed that chlorophyll content does not fully reflect leaf age, because even fully green leaves had already commenced senescence at the molecular level. Integrating senescence parameters, such as the proportion of senescent leaves, at the whole plant level provided a better indication of the molecular status of the plant than single leaf senescence parameters.  相似文献   

8.
The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf senescence mutants representing three genetic loci were selected and their senescence syndromes were characterised using phenotypical, physiological and molecular markers. old1 is represented by three recessive alleles and displayed earlier senescence both in air and upon ethylene exposure. The etiolated old1 seedlings exhibited a hypersensitive triple response. old2 is a dominant trait and the mutant plants were indistinguishable from the wild-type when grown in air but showed an earlier senescence syndrome upon ethylene treatment. old3 is a semi-dominant trait and its earlier onset of senescence is independent of ethylene treatment. Analyses of the chlorophyll degradation, ion leakage and SAG expression showed that leaf senescence was advanced in ethylene-treated old2 plants and in both air-grown and ethylene-treated old1 and old3 plants. Epistatic analysis indicated that OLD1 might act downstream of OLD2 and upstream of OLD3 and mediate the interaction between leaf age and ethylene. A genetic model was proposed that links the three OLD genes and ethylene into a regulatory pathway controlling the onset of leaf senescence.  相似文献   

9.
10.
11.
Role of growth regulators in the senescence of Arabidopsis thaliana leaves   总被引:1,自引:0,他引:1  
A homozygous, dominant, C2H4-resistant line of Arabidopsis thaliana (L.) Heynh (cv. Columbia; er ) was selected from ethylmethylsulfonate-mutagenized seed, and used to test the role of C2H4 and other growth regulators in senescence of mature leaves. Chlorophyll (Chl) loss from disks excised from leaves of er was much slower than that from wild-type (WT) disks, whether they were held in the light or in the dark. C2H4 accelerated Che loss from WT disks but had no effect on the yellowing of mutant disks. C2H4 biosynthesis was higher in disks from the mutant plants, particularly in the light. In the dark, treatment with the cytokinin, 6-benzyladenine (BA), reduced Chl loss from wild-type disks, but had no effect on mutant disks. In the light, BA treatment stimulated chlorophyll breakdown in both wild type and mutant disks. Treatment with abscisic acid (ABA) stimulated chlorophyll loss in wild-type and mutant disks, whether they were held in the light or the dark. C2H4 production was stimulated in ABA-treated disks, but they still yellowed even when C2H4 production was inhibited by application of aminooxyacetic acid (AOA). These data indicate that C2H4 is only one of the factors involved in leaf senescence, and that the promotion of senescence by ABA is not mediated through its stimulation of C2H4 production.  相似文献   

12.
13.
以野生型拟南芥(Arabidopsis thaliana)及其突变体(atrbohD、atrbohF、atrbohD/F、atl-cdes、atd-cdes)和过表达株系(OEL-CDes、OED-CDes)为材料,利用药理学实验,结合分光光度法和激光共聚焦显微技术,探讨硫化氢(hydrogen sulfide,H2S)在干旱诱导的拟南芥气孔关闭中的作用及其与过氧化氢(hydrogen peroxide,H2O2)的关系.结果表明,H2S清除剂次牛磺酸(hypotaurine,HT)及合成抑制剂氨氧基乙酸(aminooxy acetic acid,AOA)、羟胺(hydroxylamine,NH2OH)和丙酮酸钾(potasium pyruvate,C3H3KO3)+氨水(ammonia,NH3)均可不同程度抑制干旱诱导的气孔关闭;干旱对OEL-CDes和OED-CDes植株气孔关闭的诱导作用明显,而atl-cdes和atd-cdes叶片气孔对干旱胁迫反应的敏感性下降;干旱胁迫能明显增加拟南芥保卫细胞中H2O2水平及叶片中H2S含量,提高D-/L-半胱氨酸脱巯基酶活性及基因表达量,而对突变体atrbohD、atrbohF和atrbohD/F没有显著影响.清除H2O2可减弱干旱胁迫对H2S含量和D-/L-半胱氨酸脱巯基酶活性的诱导效应.研究结果表明H2S位于H2O2下游参与干旱诱导拟南芥气孔关闭的信号转导过程.  相似文献   

14.
The possible role of H2O2 metabolism on light-regulated senescence of detached rice leaves was investigated. Light retards senescence but at the same time accumulates more H2O2. Light treatment resulted in an increase in malondialdehyde level in detached rice leaves but no membrane leakage was observed in light-treated detached leaves. It seems that there was no direct relationship between lipid peroxidation and deterioration in membrane integrity. The results obtained suggest that retardation of senescence by light is closely related to high activities of superoxide dismutase and ascorbate peroxidase.  相似文献   

15.
16.
Properties and functions of glutathione reductase in plants   总被引:14,自引:0,他引:14  
The assay and in vitro characterization of glutathione reductase (EC 1.6.4.2) is discussed. In vivo the H2O2-scavenging system in chloroplasts is the best documented role of reduced glutathione and glutathione reductase in plants. Similarly, redaction of H2O2, outside of the chloroplasts, requires glutathione and glutathione reductase; but the pathway, in terms of intermediates, is controversial. The notion that biological stress frequently causes cellular oxidation has lead to the suggestion that glutathione and glutathione reductase may play a role in stress resistance or tolerance mechanisms. The changes in glutathione reductase levels in response to low temperature, oxidative stress and drought are discussed.  相似文献   

17.
H2O2介导的H2S产生参与干旱诱导的拟南芥气孔关闭   总被引:1,自引:0,他引:1  
以野生型拟南芥(Arabidopsis thaliana)及其突变体(atrbohD、atrbohF、atrbohD/F、atl-cdes、atd-cdes)和过表达株系(OEL-CDes、OED-CDes)为材料, 利用药理学实验, 结合分光光度法和激光共聚焦显微技术, 探讨硫化氢(hydrogen sulfide, H2S)在干旱诱导的拟南芥气孔关闭中的作用及其与过氧化氢(hydrogen peroxide, H2O2)的关系。结果表明, H2S清除剂次牛磺酸(hypotaurine, HT)及合成抑制剂氨氧基乙酸(aminooxy acetic acid, AOA)、羟胺(hydroxylamine, NH2OH)和丙酮酸钾(potasium pyruvate, C3H3KO3)+氨水(ammonia, NH3)均可不同程度抑制干旱诱导的气孔关闭; 干旱对OEL-CDes和OED-CDes植株气孔关闭的诱导作用明显, 而atl-cdes和atd-cdes叶片气孔对干旱胁迫反应的敏感性下降; 干旱胁迫能明显增加拟南芥保卫细胞中H2O2水平及叶片中H2S含量, 提高D-/L-半胱氨酸脱巯基酶活性及基因表达量, 而对突变体atrbohD、atrbohF和atrbohD/F没有显著影响。清除H2O2可减弱干旱胁迫对H2S含量和D-/L-半胱氨酸脱巯基酶活性的诱导效应。研究 结果表明H2S位于H2O2下游参与干旱诱导拟南芥气孔关闭的信号转导过程。  相似文献   

18.
活性氧不敏感型拟南芥的突变体对H2O2的响应   总被引:1,自引:0,他引:1  
检测拟南芥ros突变株对H2O2响应的结果表明,此种突变体对H2O2有较强的耐受性,表现为气孔开度对H2O2不敏感和H2O2胁迫时的膜脂过氧化水平较低。采用激光扫描共聚焦显微术(LSCM)并结合H2O2荧光探针H2DCFDA检测外源ABA诱导保卫细胞的结果显示,突变体内荧光强度比野生型拟南芥低,暗示此种突变体消除H2O2的能力可能有提高,从而可增强植株抗氧化胁迫的能力。  相似文献   

19.
We have characterized the structure and expression of a senescence-associated gene (sen1) of Arabidopsis thaliana. The protein-coding region of the gene consists of 5 exons encoding 182 amino acids. The encoded peptide shows noticeable similarity to the bacterial sulfide dehydrogenase and 81% identity to the peptide encoded by the radish din1 gene. The 5-upstream region contains sequence motifs resembling the heat-shock- and ABA-responsive elements and the TCA motif conserved among stress-inducible genes. Examination of the expression patterns of the sen1 gene under various senescing conditions along with measurements of photochemical efficiency and of chlorophyll content revealed that the sen1 gene expression is associated with Arabidopsis leaf senescence. During the normal growth phase, the gene is strongly induced in leaves at 25 days after germination when inflorescence stems are 2–3 cm high, and then the mRNA level is maintained at a comparable level in naturally senescing leaves. In addition, dark-induced senescence of detached leaves or of leaves in planta resulted in a high-level induction of the gene. Expression of the sen1 gene was also strongly induced in leaves subjected to senescence by 0.1 mM abscisic acid or 1 mM ethephon treatment. The induced expression of the gene by dark treatment was not significantly repressed by treatment with 0.1 mM cytokinin or 50 mM CaCl2 which delayed loss of chlorophyll but not that of photochemical efficiency.  相似文献   

20.
We have studied the morphology and vein branching of rosette leaves in Arabidopsis thaliana mutants as and sa, which proved to be alleles of the A.thaliana AS1 and AS2 genes, respectively. We have also analyzed the localization of bioactive auxin, as measured by the expression of the DR5::GUS transgene, as well as the expression patterns of BP, as measured by the expression of the BP::GUS transgene in leaves of the mutants. In mature leaves of the mutants, BP was expressed ectopically. Furthermore, the mutants showed some defects in the localization and concentration of free auxin compared to the wild type. Our results of studying new alleles of AS1 and AS2 support their role in control of class I KNOX genes and auxin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号