首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibacterial, antifungal and antiprotozoal effects of nine mono- and bishydrazones of glycolaldehyde, glyoxal, methoxyacetaldehyde and glutaraldehyde were studied using eight model organisms. It was found that bishydrazones are much more efficient antimicrobial agents than monohydrazones in the case of all model microorganisms.  相似文献   

2.
Reaction of glycolaldehyde with the binary E-NADP complex of bovine kidney aldose reductase (ALR2) produces an enzyme-bound chromophore whose absorbance (lambd max 341 nm) and fluorescence (lambda ex max 341 nm; lambda emit max 421 nm) properties are distinct from those of NADPH or E.NADPH yet are consistent with the proposed covalent adduct structure [1,4-dihydro-4-(1-hydroxy-2-oxoethyl)nicotinamide adenine dinucleotide phosphate]. The kinetics of adduct formation, both in solution and at the enzyme active site, support a mechanism involving rate-determining enolization of glycolaldehyde at high [NADP+] or [E.NADP]. At low [NADP+] or [E.NADP] the reaction is second-order overall, but the ALR2-mediated reaction displays saturation by glycolaldehyde due to competition of the aldehyde (plus hydrate) and enol for E.NADP. Measurement of the pre-steady-state burst of E-adduct formation confirms that glycolaldehyde enol is the reactive species and gives a value of 1.3 x 10(-6) for Kenol = [enol]/[( aldehyde] + [hydrate]), similar to that determined by trapping the enol with I3-. At the ALR2 active site, the rate of adduct formation is enhanced 79,000-fold and the adduct is stabilized greater than or equal to 13,000-fold relative to the reaction with NADP+ in solution. A portion of this enhancement is ascribed to specific interaction of NADP+ with the enzyme since the 3-acetylpyridine analogue, (AP)ADP+, gives values that are 15-200-fold lower. Additional evidence for strong interaction of ALR2 with both NADP+ and NADPH is reported. Yet, because dissociation of adduct is slow, catalysis of the overall adduct formation reaction by ALR2 is less than or equal to 67-fold.  相似文献   

3.
Previously, we showed that dietary fructose or its carbonyl metabolites, glyceraldehyde and glycolaldehyde, could be oxidized by inflammatory reactive oxygen species (ROS), products of immune cells, to form highly toxic and genotoxic products, such as glyoxal. Glycolaldehyde-caused hepatocyte protein carbonylation likely resulted from glyoxal, an autoxidation product formed by ROS. Although hepatocyte protein carbonylation by glyoxal or d-glycolaldehyde was rapid, the product was unstable. Glyceraldehyde-induced protein carbonylation was slower and was also less cytotoxic. Non-toxic concentrations of H(2)O(2) were then used to mimic inflammation and oxidative stress associated with fructose-induced non-alcoholic steatohepatitis (NASH). A slow infusion of H(2)O(2) markedly increased glyoxal, glyceraldehyde, and glycolaldehyde-induced cytotoxicity and protein carbonylation. However, it had a smaller effect on glyceraldehyde-induced protein carbonylation. The cytotoxicities of both aldehydes were increased if glutathione (GSH)-depleted hepatocytes were used, presumably because of the increased ROS formation and subsequent glyoxal-induced protein carbonylation. Catalytic amounts of Cu or Fe increased the glycolaldehyde and glyceraldehyde-induced cytotoxicity and protein carbonylation resulting from autoxidation to glyoxal. Glyceraldehyde and glycolaldehyde were also detoxified by mitochondrial aldehyde dehydrogenase (ALDH2) as ALDH2 inhibitors increased their cytotoxicity. Hydroxypyruvate has not been previously tested for toxicity and was found to be the most toxic fructose metabolite. Catalytic amounts of Cu or Fe caused hydroxypruvate autoxidation, which formed extensive ROS, glycolaldehyde and glyoxal. Iron chelators EGTA or deferoxamine inhibited cytotoxicity as well as the extensive ROS formation. The Girard assay confirmed that glyoxal was a common autoxidation product from glyceraldehyde, glycolaldehyde and hydroxypyruvate.  相似文献   

4.
The present paper reviews oxidases catalyzing conversion of glycolaldehyde into glyoxal. The enzymatic oxidation of glycolaldehyde into glyoxal was first reported in alcohol oxidases (AODs) from methylotrophic yeasts such as Candida and Pichia, and glycerol oxidase (GLOD) from Aspergillus japonicus, although it had been reported that these enzymes are specific to short-chain linear aliphatic alcohols and glycerol, respectively. These enzymes continuously oxidized ethylene glycol into glyoxal via glycolaldehyde. The AODs produced by Aspergillus ochraceus and Penicillium purpurescens also oxidized glycolaldehyde. A new enzyme exhibiting oxidase activity for glycolaldehyde was reported from a newly isolated bacterium, Paenibacillus sp. AIU 311. The Paenibacillus enzyme exhibited high activity for aldehyde alcohols such as glycolaldehyde and glyceraldehyde, but not for methanol, ethanol, ethylene glycol or glycerol. The deduced amino acid sequence of the Paenibacillus AOD was similar to that of superoxide dismutases (SODs), but not to that of methylotrophic yeast AODs. Then, it was demonstrated that SODs had oxidase activity for aldehyde alcohols including glycolaldehyde. The present paper describes characteristics of glycolaldehyde oxidation by those enzymes produced by different microorganisms.  相似文献   

5.
An enzymatic method for glycolaldehyde production from ethylene glycol was investigated using immobilized alcohol oxidase and catalase. Those enzymes were immobilized onto Chitopearl BCW 3501. When only alcohol oxidase was immobilized onto it, the apparent activity was 190 units/g in wet gel using methanol as the substrate. Tris-HCl buffer (1.5 M; pH 9.0) was selected based on a high stability of glycolaldehyde and a low production of glyoxal as a by-product. Under the optimum conditions, 0.97 M glycolaldehyde was formed from 1.0 M ethylene glycol and the ratio of glyoxal to glycolaldehyde was less than 1%.  相似文献   

6.
The ability of short-chain sugars to cause oxidative stress has been examined using glycolaldehyde as the simplest sugar. Short-chain sugars autoxidize in air, producing superoxide and alpha,beta-dicarbonyls. In Escherichia coli the soxRS regulon mediates an oxidative stress response, which protects the cell against both superoxide-generating agents and nitric oxide. In superoxide dismutase-deficient E. coli mutants, glycolaldehyde induces fumarase C and nitroreductase A, which are regulated as members of the soxRS regulon. A mutational defect in soxRS eliminates that induction. This establishes that glycolaldehyde can cause induction of this defensive regulon. This effect of glycolaldehyde was oxygen-dependent, was not shown by glyoxal, and was not seen in the superoxide dismutase-replete parental strain, and it was abolished by a cell-permeable SOD mimetic. All of these suggest that superoxide radicals produced by the oxidation of glycolaldehyde played a key role in the induction.  相似文献   

7.
A new oxidative reaction of ethylene glycol was found with two alcohol oxidases from methanol yeast, Candida sp. and Pichia pastoris. Both alcohol oxidases oxidized ethylene glycol to glyoxal via glycolaldehyde. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Candida alcohol oxidase were around 8.5 and 5.5, respectively, and their apparent Kms were 2.96 m and 28.6 mm, respectively. The optimum temperature was 40°C at pH 7.0. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Pichia alcohol oxidase were around 8.0 and 6.0, respectively, and their optimum temperatures were 50 and 45°C, respectively, at pH 7.0. The apparent Km for glycolaldehyde was found to be 83.3 mm. For the accumulation of glyoxal, addition of catalase was effective, and a higher amount of glyoxal was obtained at a much lower temperature than the optimum for the alcohol oxidase. When 0.1 m ethylene glycol and glycolaldehyde were incubated with 80 units of the Pichia enzyme at 10°C, both substrates were almost completely converted to glyoxal after 10 and 3h of incubation, respectively.  相似文献   

8.
Pouzar V  Cerný I  Lapcík O  Hill M  Hampl R 《Steroids》2003,68(2):149-158
Synthetic routes leading to 19E and 7Z O-(carboxymethyl)oximes derived from 16alpha-hydroxydehydroepiandrosterone were developed using two independent methods for introduction of the 16alpha-hydroxy group. Firstly, the oxime moiety was built, and then, either epoxidation of the enol acetate followed by the boron trifluoride mediated rearrangement or alkaline hydrolysis of the corresponding alpha-bromide in aqueous N,N-dimethylformamide were employed. The last step in both methods was removal of the protecting groups, which consisted of acid deprotection of the acetates and gentle alkaline hydrolysis of the methyl ester. Final haptens were designed as components for immunoanalytical kits.  相似文献   

9.
Ammonia and amines (including amino acids) were shown tocatalyze the formation of sugars from formaldehyde andglycolaldehyde, and the subsequent conversion of sugars tocarbonyl-containing products under the conditions studied (pH5.5 and 50°C). Sterically unhindered primary amineswere better catalysts than ammonia, secondary amines, andsterically hindered primary amines (i.e.-aminoisobutyric acid). Reactions catalyzed by primaryamines initially consumed formaldehyde and glycolaldehyde about15–20 times faster than an uncatalyzed control reaction. Theamine-catalyzed reactions yielded aldotriose (glyceraldehyde),ketotriose (dihydroxyacetone), aldotetroses (erythrose andthreose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde,glyoxal, pyruvate, glyoxylate, and several unindentifiedcarbonyl products. The concentrations of the carbonyl products,except pyruvate and ketotetrose, initially increased and thendeclined during the reaction, indicating their ultimateconversion to other products (like larger sugars or pyruvate).The uncatalyzed control reaction yielded no pyruvate orglyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalyticprimary amine, such as alanine, the rates of triose andpyruvaldehyde of synthesis were about 15-times and 1200-timesfaster, respectively, than the uncatalyzed reaction. Sinceprevious studies established that alanine is synthesized fromglycolaldehyde and formaldehyde via pyruvaldehyde as its directprecursor, the demonstration that the alanine catalyzes theconversion of glycolaldehyde and formaldehyde to pyruvaldehydeindicates that this synthetic pathway is capable ofautocatalysis. The relevance of this synthetic process, namedthe Sugar Model, to the origin of life is discussed.  相似文献   

10.
Citrate synthase forms citrate by deprotonation of acetyl-CoA followed by nucleophilic attack of this substrate on oxaloacetate, and subsequent hydrolysis. The rapid reaction rate is puzzling because of the instability of the postulated nucleophilic intermediate, the enolate of acetyl-CoA. As alternatives, the enol of acetyl-CoA, or an enolic intermediate sharing a proton with His-274 in a “low-barrier” hydrogen bond have been suggested. Similar problems of intermediate instability have been noted in other enzymic carbon acid deprotonation reactions. Quantum mechanical/molecular mechanical calculations of the pathway of acetyl-CoA enolization within citrate synthase support the identification of Asp-375 as the catalytic base. His-274, the proposed general acid, is found to be neutral. The acetyl-CoA enolate is more stable at the active site than the enol, and is stabilized by hydrogen bonds from His-274 and a water molecule. The conditions for formation of a low-barrier hydrogen bond do not appear to be met, and the calculated hydrogen bond stabilization in the reaction is less than the gas-phase energy, due to interactions with Asp-375 at the active site. The enolate character of the intermediate is apparently necessary for the condensation reaction to proceed efficiently. Proteins 27:9–25 © 1997 Wiley-Liss, Inc.  相似文献   

11.
A new spot test on silica gel thin-layers of some carbonyl compounds was described, which was based on their fluorigenic reactions with o-aminodiphenyl dissolved in diluted sulfuric acid. Pyridoxal, higher fatty aldehydes, glycolaldehyde, glyoxylic acid and 2,3-pentanedione gave brilliantly fluorescent spots in UV light by heating with the reagent sprayed. Some other non- or sparingly volatile carbonyls also gave positive results.

The reaction of glyoxal with the reagent was carried out in aqueous solution. A linear relationship between the fluorescence intensity and glyoxal concentration was observed.  相似文献   

12.
13.
The effects of fluoride on the activities of acid phosphatase (EC 3.1.3.2) from potato and alkaline phosphatase (EC 3.1.3.1) from E. coli during pyrophosphate and p-nitrophenylphosphate hydrolysis and on the activities of inorganic pyrophosphatase (EC 3.6.1.1) from baker's yeast during pyrophosphate hydrolysis were compared. For both phosphatases the type of interaction was found to be independent on the nature of substrate. For acid phosphatase and inorganic pyrophosphatase the inhibition was of non-competitive and uncompetitive types, respectively. In the case of alkaline phosphatase fluoride increased the rate of p-nitrophenol release during p-nitrophenylphosphate hydrolysis at pH greater than or equal to 7.9 without affecting the rate of phosphate release, which is indicative of fluorophosphate formation in the course of the transphosphorylation reaction. The data obtained suggest the existence of essential differences in the mechanisms of fluoride effects on the three enzymes under study.  相似文献   

14.
Fibrinogen is a key protein involved in coagulation and its deposition on blood vessel walls plays an important role in the pathology of atherosclerosis. Although the causes of fibrinogen (fibrin) deposition have been studied in depth, little is known about the relationship between fibrinogen deposition and reactive carbonyl compounds (RCCs), compounds which are produced and released into the blood and react with plasma protein especially under conditions of oxidative stress and inflammation. Here, we investigated the effect of glycolaldehyde on the activity and deposit ion of fibrinogen compared with the common RCCs acrolein, methylglyoxal, glyoxal and malondialdehyde. At the same concentration (1 mmol/L), glycolaldehyde and acrolein had a stronger suppressive effect on fibrinogen activation than the other three RCCs. Fibrinogen aggregated when it was respectively incubated with glycolaldehyde and the other RCCs, as demonstrated by SDS-PAGE, electron microscopy and intrinsic fluorescence intensity measurements. Staining with Congo Red showed that glycolaldehyde- and acroleinfibrinogen distinctly formed amyloid-like aggregations. Furthermore, the five RCCs, particularly glycolaldehyde and acrolein, delayed human plasma coagulation. Only glycolaldehyde showed a markedly suppressive effect on fibrinogenesis, none did the other four RCCs when their physiological blood concentrations were employyed, respectively. Taken together, it is glycolaldehyde that suppresses fibrinogenesis and induces protein aggregation most effectively, suggesting a putative pathological process for fibrinogen (fibrin) deposition in the blood.  相似文献   

15.
Chen B  Li M  Lin M  Tumambac G  Rustum A 《Steroids》2009,74(1):30-428
Enol aldehydes are one type of key degradation and metabolic intermediates from a group of corticosteroids containing the 1,3-dihydroxyacetone side chain on their D-rings, such as betamethasone, dexamethasone, beclomethasone, and related compounds. The formation of enol aldehydes from these corticosteroids is via acid-catalyzed β-elimination of water from the side chain, a process known as Mattox rearrangement. It was recently reported by our group that enol aldehydes could also be formed directly from the corresponding 17,21-diesters of these corticosteroids but only under alkaline condition, which was proposed to follow a variation pathway of the original Mattox rearrangement. In this paper, we report the results of a comparative study of enol aldehyde formation from these structurally similar corticosteroids (under the original acidic Mattox condition) and their 17,21-diesters (under the alkaline Mattox variation condition), respectively. In general, enol aldehydes were found to be formed under both conditions; however, the ratios of the E- and Z-isomers of the enol aldehyde were different in each case. The only exception was beclomethasone 17,21-diester under the alkaline condition, where a competing elimination of HCl from the 9,11-positions became predominant. These results can be explained by their structural differences with regard to the Mattox mechanism and its variation pathway. Lastly, solvent effect under acidic condition was studied between an aprotic and a protic solvent and the result suggests that enol aldehyde formation is greatly favored in an aprotic environment.  相似文献   

16.
Short chain sugars such as glycolaldehyde are produced at the initial stages of nonenzymatic glycosylation. Because their carbonyl groups cannot be blocked by cyclization, such compounds tautomerize to enediols, which are prone to autoxidation. Superoxide radical serves as an initiator and a propagator of this autoxidation. The biological importance of the involvement of superoxide in sugar autoxidation in vivo was examined using superoxide dismutase (SOD)-deficient and SOD-replete strains of Escherichia coli. Glycolaldehyde, glyceraldehyde, and dihydroxyacetone greatly enhanced the mutation rates in SOD-deficient E. coli. The effect was oxygen-dependent and was suppressed by SOD or by a SOD mimetic. The mutagenic effect of glycolaldehyde coincided with intracellular accumulation of glyoxal, a product of glycolaldehyde autoxidation.  相似文献   

17.
The extent to which sugars serve as targets for superoxide was examined using glycolaldehyde as the simplest sugar and using superoxide dismutase (SOD)-replete and SOD-null strains growing under aerobic and anaerobic conditions. Glycolaldehyde was more toxic to the SOD-null strain than to its SOD-replete parent, and this differential effect was oxygen-dependent. The product, glyoxal, could be trapped in the medium by 1,2-diaminobenzene and assayed as quinoxaline. The SOD-null strain produced more glyoxal and eliminated it more slowly than the SOD-replete parent strain. Glyoxal was approximately 10 times more toxic than glycolaldehyde and was more toxic to the SOD-null strain than to the parental strain. 1,2-Diaminobenzene protected against the toxicity of glycolaldehyde. These Escherichia coli strains contained the glutathione-dependent glyoxalases I and II, as well as the glutathione-independent glyoxalase III. Of these enzymes, glyoxalase III was most abundant, and it was inactivated within the aerobic SOD-null strain and also in extracts when exposed to the flux of superoxide and hydrogen peroxide imposed by the xanthine oxidase reaction. Thus, it appears that short chain sugars are oxidized by superoxide yielding toxic dicarbonyls. Moreover, the defensive glyoxalase III is also inactivated by the oxidative stress imposed by the lack of SOD, thereby exacerbating the deleterious effect of sugar oxidation.  相似文献   

18.
The desmutagenic effects of alpha-hydroxycarbonyl compounds, such as glyceraldehyde, glycolaldehyde, dihydroxyacetone, furfural, 5-hydroxymethylfurfural, maltol, acetol and acetoin and alpha-dicarbonyl compounds, such as diacetyl, glyoxal, methyl glyoxal and 2,3-pentanedione were investigated against the mutagenic heterocyclic amines, such as Trp-P-1, Trp-P-2, Glu-P-1, Glu-P-2 and IQ. Most of the carbonyl compounds suppressed the mutagenicity of heterocyclic amines for S. typhimurium TA98, alpha-dicarbonyl compounds showing a higher desmutagenic effect than alpha-hydroxycarbonyl compounds. Among the alpha-hydroxycarbonyl compounds, glyceraldehyde, glycolaldehyde and dihydroxyacetone showed more effective desmutagenicity, and diacetyl among the alpha-dicarbonyl compounds had the highest desmutagenic effect. These carbonyl compounds alone also showed mutagenicity to S. typhimurium TA100 without S9 mix. The reaction of carbonyl compounds with mutagenic heterocyclic amines also eliminated the mutagenicity of the former for S. typhimurium TA100.  相似文献   

19.
BACKGROUND: The Maillard reaction that leads to the formation of advanced glycation end-products (AGE) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it was proposed that AGE were not only created by glucose, but also by dicarbonyl compounds derived from the Maillard reaction, autoxidation of sugars and other metabolic pathways of glucose. In this study, we developed four types of non-carboxymethyllysine (CML) anti-AGE antibodies that recognized proteins modified by incubation with short chain sugars and dicarbonyl compounds. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with glyceraldehyde, glycolaldehyde, methylglyoxal or glyoxal. After immunization of rabbits, four types of AGE-specific antisera were obtained that were specific for the AGE modification. To separate non-CML AGE antibodies (Ab) (non-CML AGE-Ab-2, -3, -4, and -5), these anti-AGE antisera were subjected to affinity chromatography on a matrix coupled with four kinds of AGE bovine serum albumin (BSA) or CML-BSA. These non-CML AGE antibodies were used to investigate the AGE content of serum obtained from diabetic patients on hemodialysis. RESULTS: Characterization of the four types of non-CML AGE antibodies obtained by immunoaffinity chromatography was performed by competitive ELISA and immunoblot analysis. Non-CML AGE-Ab-2 crossreacted with the protein modified by glyceraldehyde or glycolaldehyde. Non-CML AGE-Ab-3 and -Ab-4 specifically cross-reacted with protein modified by glycolaldehyde and methylglyoxal, respectively. NonCML AGE-Ab-5 cross-reacted with protein modified with glyoxal as well as methylglyoxal and glycolaldehyde. Three kinds of non-CML AGE (AGE-2, -4, and -5) were detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD; whereas, AGE-3 was detected as two peaks with apparent molecular weights of 200 and 0.85 kD. CONCLUSION: We propose that various types of non-CML AGE are formed by the Maillard reaction, sugar autoxidation and sugar metabolism. These antibodies enable us to identify such compounds created by the Maillard reaction in vivo.  相似文献   

20.
Dihydroxyacetone, glyceraldehyde, glyoxal, methyl glyoxal, and glyoxylic acid were found to show mutagenicity on Salmonella typhimurium TA 100. The mutagenicities of these substances were inhibited by the addition of S-9 or some free radical scavengers. The alkaline buffered solutions of these mutagenic substances were found to reduce Nitro Blue tetrazolium chloride. DNA was degraded by the addition of these mutagenic substances. It has also been confirmed that free radicals derived from autoxidation of these substances are responsible for their mutagenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号