首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the pigmentation regulated by light was investigated in ray floret (rf) of Gerbera hybrida. When inflorescences from stage 1 were covered with aluminium foil in vivo the pigmentation of the rf petals was strongly blocked and the gene expression of CHS (Chalcone synthase) and DFR (Dihydroflavonol-4-reductase) was inhibited. Similar results were obtained when the detached rfs were cultured in vitro. Covering of the leaves on the plants resulted in reduced pigmentation compared with the covering of inflorescences in vivo. Removal of the green bracts did not affect the pigmentation significantly and the anthocyanin concentration was maintained at a level similar to that of the control. The ultrastructure of the plastids in rf petals was examined to investigate the possible role of photosynthesis in light regulation of flower pigmentation. Plastids within rf epidermal cells showed a characteristic chloroplast morphology in flowers at stage 2, which deteriorated by stage 3. They then changed to a chromoplast-like structure in fully opened rf petals (stage 6). Similar chromoplast-like structures were observed in the plastids of the rf petals from inflorescences both shaded in vivo and in vitro. Additionally, DCMU, a photosynthetic inhibitor, did not show a significant effect on light-induced anthocyanin accumulation. Our data suggest that light is an important factor for pigmentation of rf petal in Gerbera and the petal itself acts as a light sensor site to perceive the light signal. From the different light qualities evaluated, blue light promoted gene expression of CHS and DFR, and red light enhanced the gene expression of CHS, indicating the photoreceptors responding to blue and red light involved in the photoregulation of flower pigmentation in Gerbera.  相似文献   

2.
3.
A mutant has been isolated from Anabaena sp. strain CA by treatment with N-methyl-N'-nitro-N-nitrosoguanidine, which has the unusual phenotypic characteristic of growth only under N2-fixing conditions. Growth of the mutant was completely inhibited by NO3- or NH4+ at concentrations routinely used for growth of the wild type, and sensitivity to NH4+ was especially pronounced. The inhibitory effect of NH4+ could not be overcome by glutamine, glutamate, or casein hydrolysate. Ammonia had no immediate inhibitory effect on protein synthesis, CO2 fixation, or O2 evolution, and the gradual inhibition of C2H2 reduction activity by NH4+ resembled a repression phenomenon. The glutamine synthetase activity of N2-fixing cultures appeared normal, yet the mutant was incapable of utilizing exogenous NH4+ for growth. Preliminary evidence suggests a possible alteration of glutamine synthetase, which could result in sensitivity to exogenous NH4+ by progressive inactivation of the enzyme or repression of its synthesis.  相似文献   

4.
In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can regulate according to these anatomical patterns, we have analysed gene expression affecting two enzymatic steps, chalcone synthase (CHS) and dihydroflavonol-4-reductase (DFR), in five gerbera varieties with spatially restricted anthocyanin pigmentation patterns. The dfr expression profiles vary at the levels of floral organ, flower type and region within corolla during inflorescence development according to the anthocyanin pigmentation of the cultivars. In contrast, chs expression, although regulated in a tissue-specific manner during inflorescence development, varies only occasionally. The variation in the dfr expression profiles between the varieties reveals spatially specific gene regulation that senses the differentiation events characteristic of the composite inflorescence.  相似文献   

5.
6.
7.
The phototrophic purple bacterium Rhodopseudomonas sphaeroides, strain 2R, can assimilate ammonium by means of glutamine synthetase and glutamate synthase. A higher activity of glutamine synthetase is displayed by cells grown in the medium with glutamate or in the atmosphere of molecular nitrogen. The activity of glutamate synthase also rises when cells grow in the atmosphere of N2. However, in contrast to glutamine synthetase, the activity of glutamate synthase does not decrease in the presence of considerable NH4+ amounts. The glutamine synthetase of R. sphaeroides is modified by adenylylation/deadenylylation. In the presence of nitrogenase in R. sphaeroides, the glutamine synthetase is found mainly in the deadenylylation state. Methionine sulfone, an inhibitor of glutamine synthetase, partly restores the activity of nitrogenase in the presence of ammonium, and prevents adenylylation of glutamine synthetase.  相似文献   

8.
In addition to contributing to the coloration of plant organs and their defense against herbivores, the consumption of anthocyanins in the human diet has a number of health benefits. Crabapple (Malus sp.) represents a valuable experimental model system to research the mechanisms and regulation of anthocyanin accumulation, in part due to the often vivid and varied petal and leaf coloration that is exhibited by various cultivars. The enzyme anthocyanidin synthase (ANS) plays a pivotal role in anthocyanin biosynthesis; however, the relationship between ANS expression and petal pigmentation has yet to be established in crabapple. To illuminate the mechanism of anthocyanin accumulation in crabapple petals, we evaluated the expression of two crabapple ANS allelic genes (McANS-1 and McANS-2) and the levels of anthocyanins in petals from cultivars with dark red (‘Royalty’) and white (‘Flame’) petals, as well as another (‘Radiant’) whose petals have an intermediate pink color. We determined that the expression of McANS in the three cultivars correlated with the variation of anthocyanin accumulation during different petal developmental stages. Furthermore, transgenic tobacco plants constitutively overexpressing one of the two McANS genes, McANS-1, had showed elevated anthocyanin accumulation and a deeper red coloration in their petals than those from untransformed control lines. In conclusion, we propose that McANS are responsible for anthocyanin accumulation during petal coloration in different crabapple cultivars.  相似文献   

9.
Nitrogenase activity in Rhodospirillum rubrum was inhibited by NH4+ more rapidly in low light than in high light. Furthermore, the nitrogenase of cells exposed to phosphorylation uncouplers was inhibited by NH4+ more rapidly than was the nitrogenase of controls without an uncoupler. These observations suggest that high levels of photosynthate inhibit the nitrogenase inactivation system. L-Methionine-DL-sulfoximine, a glutamine synthetase inhibitor, prevented NH4+ from inhibiting nitrogenase activity, which suggests that NH4+ must be processed at least to glutamine for inhibition to occur. An inhibitor of glutamate synthase activity, 6-diazo-5-oxo-L-norleucine, inhibited nitrogenase activity in the absence of NH4+, but only in cells exposed to low light. The mechanism of 6-diazo-5-oxo-L-norleucine inhibition appeared to be the same as that induced by NH4+, because nitrogenase activity could be restored in vitro by activating enzyme and Mn2+. The inhibitor data suggest that the glutamine pool or a molecule that responds to it activates the Fe protein-modifying (or protein-inactivating) system and that the accumulation of this (unidentified) molecule is retarded when the cells are exposed to high light. It was confirmed here that Anabaena nitrogenase is also inhibited by NH4+, but only when the cells are incubated under low light. This inhibition, however, unlike that in R. rubrum, could be completely reversed in high light, suggesting that the mechanisms of nitrogenase inhibition by NH4+ in these two phototrophs are different.  相似文献   

10.
If inhibitors of protein or RNA synthesis are administered to flower petals of the red genotype (HHHPrPr) of Impatiens balsamina at a very early stage of development, an alteration in the normal pattern of anthocyanin pigmentation results. Whereas control petals are mainly pigmented with acyl pelargonidin-3,5-diglucoside and pelargonidin-3,5-diglucoside, petals cultured in the presence of inhibitors are mainly pigmented with pelargonidin-3-monoglucoside. The complete absence of the more highly substituted forms of pelargonidin in treated petals suggests that the biochemical reactions required for the addition of glucosyl and hydroxycinnamoyl residues to pelargonidin-3-monoglucoside have been prevented. The ability to block the normal developmental pattern of pigmentation with these inhibitors suggests that de novo synthesis of active enzymes is required, and as indicated by the effectiveness of actinomycin D, specific RNA synthesis is a necessary prerequisite for the synthesis of the normal anthocyanin complement in this tissue. The ability of the white flowered genotype (llhhpp) to metabolize exogenously supplied pelargonidin-3-monoglucoside was found to be prevented by prior culture of immature petals in the presence of DL-ethionine. The data indicate that the enzymes required for this ability are not products of induction by the substrate but rather their presence is a normal feature of petal development. Treatment with inhibitors has failed to produce any inhibition in the formation of specific anthocyanins found in the flower petals of some other genotypes of I. balsamina.  相似文献   

11.
12.
We have established a protocol to study the kinetics of incorporation of 15N into glutamine (Gln), glutamic acid (Glu), alanine (Ala) and proline (Pro) in Aedes aegypti females. Mosquitoes were fed 3% sucrose solutions containing either 80 mM 15NH4Cl or 80 mM glutamine labeled with 15N in either the amide nitrogen or in both amide and amine nitrogens. In some experiments, specific inhibitors of glutamine synthetase or glutamate synthase were added to the feeding solutions. At different times post feeding, which varied between 0 and 96 h, the mosquitoes were immersed in liquid nitrogen and then processed. These samples plus deuterium labeled internal standards were derivatized as dimethylformamidine isobutyl esters or isobutyl esters. The quantification of 15N-labeled and unlabeled amino acids was performed by using mass spectrometry techniques. The results indicated that the rate of incorporation of 15N into amino acids was rapid and that the label first appeared in the amide side chain of Gln and then in the amino group of Gln, Glu, Ala and Pro. The addition of inhibitors of key enzymes related to the ammonia metabolism confirmed that mosquitoes efficiently metabolize ammonia through a metabolic route that mainly involves glutamine synthetase (GS) and glutamate synthase (GltS). Moreover, a complete deduced amino acid sequence for GltS of Ae. aegypti was determined. The sequence analysis revealed that mosquito glutamate synthase belongs to the category of NADH-dependent GltS.  相似文献   

13.
Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways.  相似文献   

14.
Regulation of glutamine synthetase in the blue-green alga Anabaena L-31   总被引:1,自引:0,他引:1  
In N2-grown cultures of Anabaena L-31, in which protein synthesis was prevented by chloramphenicol, presence of NH+4 caused a drastic decrease of glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) activity indicating NH+4-mediated inactivation or degradation of the enzyme. The half-life of glutamine synthetase was more than 24 h, whereas that of nitrogenase (reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing), EC 1.18.2.1) was less than 4 h, suggesting that glutamine synthetase may not act as positive regulator of nitrogenase synthesis in Anabaena. Glutamine synthetase purified to homogeneity was subject to cumulative inhibition by alanine, serine and glycine. The amino acids, however, exhibited partial antagonism in this behaviour. Glyoxylate, an intermediate in photorespiration, virtually prevented the amino acid inhibition. Kinetic studies revealed inhibition of the enzyme activity by high Mg2+ concentration under limiting glutamate level and by high glutamate in limiting Mg2+. Maximum enzyme activity occurred when the ratio of glutamate to free Mg2+ was 0.5 to 1.0. The results demonstrate that the enzyme is subject to multiple regulation by various metabolites involved in nitrogen assimilation.  相似文献   

15.
Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as NH+4.   总被引:27,自引:0,他引:27  
The metabolic fate of gaseous nitrogen (15N2) fixed by free-living cultures of Rhizobia (root nodule bacteria) induced for their N2-fixation system was followed. A majority of the fixed 15N2 was found to be exported into the cell supernatant. For example, as much as 94% of the 15N2 fixed by Rhizobium japonicum (soybean symbiont) was recovered as 15NH+4 from the cell supernatant following alkaline diffusion. Several species of root nodule bacteria also exported large quantities of NH+4 from L-histidine. Evidence is presented that overproduction and export of NH+4 by free-living Rhizobia may be closely linked to the control of several key enzymes of NH+4 assimilation. For instance, NH+4 was found to repress glutamine synthetase whereas L-glutamate repressed glutamate synthase. Assimilation of NH+4 as nitrogen source for growth of Rhizobia was inhibited by glutamate. The mechanism of regulation of NH+4 production by root nodule bacteria is discussed.  相似文献   

16.
R Dumas  J Joyard    R Douce 《The Biochemical journal》1989,259(3):769-774
During the course of NH4+ (or NO2-)-plus-alpha-oxoglutarate-dependent O2 evolution in spinach (Spinacia oleracea) chloroplasts, glutamate was continuously excreted out of the chloroplasts. Under these conditions, for each molecule of NO2- or NH4+ which disappeared, one molecule of glutamate accumulated in the medium and the concentration of glutamate in the stroma space was maintained constant. SO4(2-) (or SO3(2-) behave as inhibitors of NH4+ incorporation into glutamate by intact chloroplasts. This considerable inhibition of glutamate synthesis by SO4(2-) was correlated with a rapid decline in the stromal Pi concentration. The reloading of stromal Pi with either external Pi or PPi4- relieved SO4(2-)-induced inhibition of glutamate synthesis by intact chloroplasts. It was concluded that SO4(2-) induced a rapid efflux of stromal Pi out of the chloroplast, leading to a limitation of ATP synthesis and therefore to an arrest of ATP-dependent glutamine synthetase functioning.  相似文献   

17.
天门冬酰胺(Asn)和谷氨酰胺(Gln)对荚膜红假单孢菌固氮酶活性抑制,在表观上类似于氨关闭效应,这种抑制效应由GS参与,相似于氨抑的传感机制。中断Gln代谢的6-diazo-5-oxo-L-norleucine(DON)存在时,氨抑的持续时间延长,与此相类似,Gln抑制加剧,这可能归之于Gln的积累。但是,Gln抑制被methionine sulfoximine(MSX,GS的抑制剂)消除,消除时MSX对Gln的浓度比值约为0.2,与氨抑消除所需的MSX对氨的浓度比值相当。此外,MSX消除氨抑不为DON拮抗,表明Gln抑制固氮酶活性由GS传感。然而,不能抑制GS转谷酰基活性的methionine suffone(MSF,谷氨酸的类似物)却与MSX相同,能消除Gln和氨对固氮活性的抑制。上述观察结果也可延伸至Asn的关闭固氮酶活性效应。  相似文献   

18.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

19.
20.
In vivo (15)N nuclear magnetic resonance (NMR) as well as (15)N solid-state magic angle spinning (MAS) NMR spectroscopy were used to investigate nitrogen metabolism in cultured white spruce (Picea glauca) buds. Long-term as well as short-term experiments were carried out involving the use of inhibitors of the nitrogen pathways such as methionine sulfoximine (MSO), azaserine (AZA) and aminooxyacetate (AOA). Both in vivo and solid-state NMR showed that when MSO blocked glutamine synthetase (GS) no NH(4)(+) is incorporated. When glutamate synthase (GOGAT) is blocked by AZA there is some incorporation into glutamine (Gln), but very little into alpha-amino groups (glutamate, Glu). The transamination inhibitor AOA does not affect the metabolism of (15)NH(4)(+) into Gln and Glu, but blocks the production of arginine (Arg), as would be expected. Proline (Pro) and gamma-aminobutyric acid (GABA), which are produced directly from Glu without a transamination step, were not affected. The solid-state NMR experiments showed that protein synthesis occurred. Collectively, our results show that NH(4)(+) can only be assimilated through the GS/GOGAT pathway in P. glauca buds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号