首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivity of synthetic Fe chelates with soils and soil components   总被引:2,自引:0,他引:2  
The most effective and common Fe fertilisers in general are EDDHA and EDDHMA Fe chelates because they are highly stable ferric complexes in neutral and alkaline solutions. EDDHSA and EDDCHA iron chelates were introduced in the market recently. Commercial Fe chelates have two Fe fractions, chelated Fe and non-chelated Fe. The latter is bonded to by-products produced during the synthesis of the chelating agent. The effectiveness of Fe chelates depends on their ability to maintain Fe in the soil solution despite simultaneous equilibrium of Fe chelate with many cations, such as Ca2+. The main aim of this work was to test the possible agricultural use of EDDHSA and EDDCHA Fe chelates. The pH-Ca2+ effect on soluble and chelated Fe (pH ranging from 2 to 12) and the interaction of Fe chelates with soils and soil phases (ferrihydrite, acid peat, calcium carbonate and Ca montmorillonite) are presented. The results demonstrated that EDDHA, EDDHMA, EDDHSA and EDDCHA in solution remain fully associated with Fe from pH 4 to 9 despite competition with Ca. Among soil materials, ferrihydrite and acid peat retain both chelated and non-chelated Fe to the greatest extent. The type of chelating agent is a factor that affects chelated Fe availability in soil. FeEDDHA and FeEDDHMA were retained more by soil surfaces than FeEDDHSA and FeEDDCHA. Commercial Fe chelates present a large amount of soluble, non-chelated Fe and make Cu soluble in soils, which may be due to non-chelated Fe being displaced by Cu.  相似文献   

2.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

3.
Roots of grasses in response to iron deficiency markedly increase the release of chelating substances (`phytosiderophores') which are highly effective in solubilization of sparingly soluble inorganic FeIII compounds by formation of FeIIIphytosiderophores. In barley (Hordeum vulgare L.), the rate of iron uptake from FeIIIphytosiderophores is 100 to 1000 times faster than the rate from synthetic Fe chelates (e.g. Fe ethylenediaminetetraacetate) or microbial Fe siderophores (e.g. ferrichrome). Reduction of FeIII is not involved in the preferential iron uptake from FeIIIphytosiderophores by barley. This is indicated by experiments with varied pH, addition of bicarbonate or of a strong chelator for FeII (e.g. batho-phenanthrolinedisulfonate). The results indicate the existence of a specific uptake system for FeIIIphytosiderophores in roots of barley and all other graminaceous species. In contrast to grasses, cucumber plants (Cucumis sativus L.) take up iron from FeIIIphytosiderophores at rates similar to those from synthetic Fe chelates. Furthermore, under Fe deficiency in cucumber, increased rates of uptake of FeIIIphytosiderophores are based on the same mechanism as for synthetic Fe chelates, namely enhanced FeIII reduction and chelate splitting. Two strategies are evident from the experiments for the acquisition of iron by plants under iron deficiency. Strategy I (in most nongraminaceous species) is characterized by an inducible plasma membrane-bound reductase and enhancement of H+ release. Strategy II (in grasses) is characterized by enhanced release of phytosiderophores and by a highly specific uptake system for FeIIIphytosiderophores. Strategy II seems to have several ecological advantages over Strategy I such as solubilization of sparingly soluble inorganic FeIII compounds in the rhizosphere, and less inhibition by high pH. The principal differences in the two strategies have to be taken into account in screening methods for resistance to `lime chlorosis'.  相似文献   

4.
The possible involvement of metal ions and free radicals in the cytotoxic mechanism of Adriamycin (ADR) was investigated, using a model system ofEscherichia coli cells. It is shown thatE. coli mediated the production of free radicals under anaerobic (ADR-semiquinone) and aerobic (superoxide) conditions. ADR-induced loss of colony-forming ability was enhanced by the addition of iron (Fe) chelates. These observations suggested that a Fenton-type free radical mechanism was responsible for ADR toxicity. However, the mortality rate was essentially unchanged by the exclusion of oxygen. It was also unaffected by the addition of H2O2, catalase, or chelating agents. Cu(II), Zn(II) or Mg(II) had no effect on ADR toxicity. ADR and iron chelates did not induce measurable amounts of DNA strand-breaks. These observations suggest a mechanism of ADR-induced cell killing that is enhanced by Fe chelates, but does not directly involve oxygen-derived free radicals.  相似文献   

5.
We have studied the mechanism of the response to iron deficiency in rape (Brassica napus L.), taking into account our previous results: net H+ extrusion maintains a pH shift between the root apoplast and the solution, and the magnitude of the pH shift decreases as the buffering power in the solution increases. The ferric stress increased the ability of roots to reduce Fe[III]EDTA. Buffering the bulk solution (without change in pH) inhibited Fe[III]EDTA reduction. At constant bulk pH, the inhibition (ratio of the Fe[III]EDTA-reduction rates measured in the presence and in the absence of buffer) increased with the rate of H+ extrusion (modulated by the length of a pretreatment in 0.2 mM CaSO4). These results support the hypothesis that the apoplastic pH shift caused by H+ excretion stimulated Fe[III] reduction. The shape of the curves describing the pH-dependency of Fe[III]EDTA reduction in the presence and in the absence of a buffer fitted this hypothesis. When compared to the titration curves of Fe[III]citrate and of Fe[III]EDTA, the curves describing the dependency of the reduction rate of these chelates on pH indicated that the stimulation of Fe[III] reduction by the apoplastic pH shift due to H+ excretion could result from changes in electrostatic interactions between the chelates and the fixed chargers of the cell wall and-or plasmalemma. Blocking H+ excretion by vanadate resulted in complete inhibiton of Fe[III] reduction, even in an acidic medium in which there was neither a pH shift nor an inhibitory effect of a buffer. This indicates that the apoplastic pH shift resulting from H+ pumping is not the only mechanism which is involved in the coupling of Fe[III] reduction to H+ transport. Our results shed light on the way by which the strong buffering effect of HCO 3 - in some soils may be involved in iron deficiency encountered by some of the plants which grow in them.  相似文献   

6.

Aim

A mechanism of action for the performance of Fe chelates as soil-applied fertilizer has been hypothesized by Lindsay and Schwab (J Plant Nutr 5:821–840, 1982), in which the ligand participates in a cyclic process of delivering Fe at the root surface and mobilizing Fe from the soil. This “shuttle mechanism” seems appealing in view of fertilizer efficiency, but little is known about its performance. The chelate FeEDDHA is a commonly used Fe fertilizer on calcareous soils.

Methods

In this study, the performance of the shuttle mechanism has been examined for FeEDDHA chelates in soil interaction and pot trial experiments.

Results

The specificity of EDDHA ligands for chelating Fe from soils of low Fe availability is limited. Experimental support for a shuttle mechanism in soil-plant systems with FeEDDHA was found: specific metal mobilization only occurred upon FeEDDHA-facilitated Fe uptake. The mobilized metals originated at least in part from the root surface instead of the soil.

Conclusion

The results from this study support the existence of a shuttle mechanism with FeEDDHA in soil application. If the efficiency of the shuttle mechanism is however largely controlled by metal availability in the bulk soil, it is heavily compromised by complexation of competing cations: Al, Mn and particularly Cu.  相似文献   

7.
Nikolic  M.  Römheld  V. 《Plant and Soil》1999,215(2):229-237
The mechanism of iron (Fe) uptake from the leaf apoplast into leaf mesophyll cells was studied to evaluate the putative Fe inactivation as a possible cause of Fe deficiency chlorosis. For this purpose, sunflower (Helianthus annuus L.) and faba bean plants (Vicia faba L.) were precultured with varied Fe and bicarbonate (HCO 3 - ) supply in nutrient solution. After 2–3 weeks preculture, FeIII reduction and 59Fe uptake by leaf discs were measured in solutions with Fe supplied as citrate or synthetic chelates in darkness. The data clearly indicate that FeIII reduction is a prerequisite for Fe uptake into leaf cells and that the Fe nutritional status of plants does not affect either process. In addition, varied supply of Fe and HCO 3 - to the root medium during preculture had no effect on pH of the xylem sap and leaf apoplastic fluid. A varied pH of the incubation solution had no significant effect on FeIII reduction and Fe uptake by leaf discs in the physiologically relevant pH range of 5.0–6.0 as measured in the apoplastic leaf fluid. It is concluded that Fe inactivation in the leaf apoplast is not a primary cause of Fe deficiency chlorosis induced by bicarbonate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Supplying a sufficient amount of available iron (Fe) for plant growth in hydroponic nutrient solutions is a great challenge. The chelators commonly used to supply Fe in nutrient solutions have several disadvantages and may negatively affect plant growth. In this research study we have synthesized certain Fe-amino acid chelates, including Fe-arginine [Fe(Arg)2], Fe-glycine [Fe(Gly)2], and Fe-histidine [Fe(His)2], and evaluated their efficacy as an Fe source for two tomato cultivars (Lycopersicon esculentum Mill. cvs. ‘Rani’ and ‘Sarika’) grown in nutrient solution. Application of Fe-amino acid chelates significantly increased root and shoot dry matter yield of both tomato cultivars compared with Fe-EDTA. Tomato plants supplied with Fe-amino acid chelates also accumulated significantly higher levels of Fe, Zn, and N in their roots and shoots compared with those supplied with Fe-EDTA. In ‘Sarika’, the effect of Fe-amino acid chelates on shoot Fe content was in the order Fe(His)2?>?Fe(Gly)2?>?Fe(Arg)2. In ‘Rani’, the addition of all synthesized Fe-amino acid chelates significantly increased activity of ascorbate peroxidase (APX) in comparison with Fe-EDTA, whereas in ‘Sarika’, only Fe(His)2 increased shoot APX activity. The results obtained indicated that using Fe-amino acid chelates in the nutrient solution could supply a sufficient amount of Fe for plant uptake and also improve root and shoot growth of tomato plants, although this increase was cultivar-dependent. According to the results, Fe-amino acid chelates can be used as an alternative for Fe-EDTA to supply Fe in nutrient solutions.  相似文献   

9.
Summary A spectrophotometric method was used to study the effect of pH and competing ions (Ca, Mg, Na) on the stability of Fe- and Cu-chelates of EDTA, DTPA and EDDHA. The measured stability was compared with the calculated stability-pH diagrams. A favourable agreement with the values of the formation constants was observed. Laboratory and pot experiments were carried out by adding these chelates to saline-alkaline soil and the extractable fractions of trace elements in soil and their uptake by barley were evaluated. Availability and uptake of Fe and Cu significantly increased, with different magnitude, by chelate application. The influence on Mn and Zn was variable. The most effective chelating agents, as deduced from uptake were: EDDHA for Fe, Cu and Mn; and EDTA for Zn.Radiobiological and Physical chemistry, Faculty of Agricultural Sciences, Ghent Belgium  相似文献   

10.
Soil pH is an important factor affecting the availability of soil nutrients that impact plant growth. Given the susceptibility of soil pH to excessive fertilization and the widespread use of manures, it is essential to examine the influence of soil pH on the distribution and availability of soil nutrients. We sampled and analyzed brown soils from pear orchards in thirteen towns in Wendeng county. Samples were obtained from areas along or between rows of trees at specified distances and depths. The results showed that the soil pH fluctuated from 4.06 to 6.59 in October 2008 and from 4.24 to 7.57 in April 2009. The quantity of soil samples with pH below 5.50 increased by 34.6%. Analysis of the soil pH for samples obtained along the rows of trees showed that the pH decreased as the depth increased (except for the range 5.5 to 6.0); soil pH in the samples obtained between the rows of trees demonstrated different trends. The average organic matter (O.M.) content as well as the N (NH4+) and available P, K, Cu, Zn, Fe, and Mn contents in the samples collected in October 2008 were higher than those observed in April 2009. Conversely, the values for other available nutrients were lower than those in the samples collected in April 2009. The available nutrients and organic matter (O.M.) content in different pH ranges varied. The soil pH was significantly or very significantly correlated with N (NH4+ and NO3-), available K, Cu, Fe, and exchangeable Ca for the October 2008 samples, while a significant or very significant correlation existed between N (NH4+), available P, Zn, exchangeable Ca, and exchangeable Mg for the April 2009 samples. The correlations between soil pH and the amounts of available nutrients and organic matter (O.M.) along the rows of trees in September 2009 were nearly consistent with those between the rows.  相似文献   

11.
In sodic soils of the Indo-Gangetic alluvial plains of Northern India, flooding for short periods often occurs during the growing season of wheat, leading to low yields. A field study was therefore conducted to evaluate the effects of short-term flooding on growth, yield and mineral composition of wheat (Triticum aestivum Linn. emend. Fiori and Paol) in a sodic soil (pH 8.9, exchangeable sodium percentage 25). Flooding wheat for 2,4 and 6 days at the time of first irrigation (25-day old plants), significantly reduced tillering, plant height, delayed head emergence and resulted in 17.6, 29.0 and 46.7% reduction in grain yield, respectively, Flooding decreased oxygen diffusion rate (ODR) values, restricted root grwoth and reduced ion uptake, especially of N, P, K, Ca, Mg and Zn and led to higher absorption of Na, Fe and Mn. Under the conditions of this experiment, the reduced growth and yield of wheat resulting from short-term flooding was not due to Mn, Fe and Na toxicity but may be due to reduced uptake of nutrients resulting from O2 deficiency in the soil.  相似文献   

12.
Results of laboratory and field tests suggest that chelating agents could be used to alleviate adverse soil properties caused by excess sodium, such as low permeability. Adding multi-dentate carboxylic acid chelating agents to sodic soil, or to mixtures of soil with sodium-contaminated waste, significantly reduced sodium adsorption ratio (SAR) values. Judging from cation concentrations in saturated paste (sat. paste) filtrates, chelating agents act to ameliorate soil sodicity by releasing Ca and to a lesser extent Mg from undissolved compounds. After adding chelating agents to moist soils that contained free lime, measured weight losses were consistent with CO 2 evolution due to CaCO 3 decomposition. The electrical conductivity (EC) of the sat. paste filtrate of materials treated with chelating agents increased less than when equivalent Ca or Mg was supplied in conventional, soluble form. Bigger sat. paste vacuum filtration volumes, improved soil permeability and faster field infiltration rates were observed after treatment with chelating agents. The Ca- and Mg-complexes of agents such as citric and malic acid degrade in moist soil; such agents could perhaps be used in a series of applications to improve ease of cultivation and permeability of cropped land. The agent ethylenediamine tetraacetic acid (EDTA) forms stable complexes, and could therefore be used as a one-time treatment for sodic materials that are to be disposed of by burial, following guidelines for soil SAR and EC.  相似文献   

13.
Zhao J  Dong Y  Xie X B  Li X  Zhang X X  Shen X 《农业工程》2011,31(4):212-216
Soil pH is an important factor affecting the availability of soil nutrients that impact plant growth. Given the susceptibility of soil pH to excessive fertilization and the widespread use of manures, it is essential to examine the influence of soil pH on the distribution and availability of soil nutrients. We sampled and analyzed brown soils from pear orchards in thirteen towns in Wendeng county. Samples were obtained from areas along or between rows of trees at specified distances and depths. The results showed that the soil pH fluctuated from 4.06 to 6.59 in October 2008 and from 4.24 to 7.57 in April 2009. The quantity of soil samples with pH below 5.50 increased by 34.6%. Analysis of the soil pH for samples obtained along the rows of trees showed that the pH decreased as the depth increased (except for the range 5.5 to 6.0); soil pH in the samples obtained between the rows of trees demonstrated different trends. The average organic matter (O.M.) content as well as the N (NH4+) and available P, K, Cu, Zn, Fe, and Mn contents in the samples collected in October 2008 were higher than those observed in April 2009. Conversely, the values for other available nutrients were lower than those in the samples collected in April 2009. The available nutrients and organic matter (O.M.) content in different pH ranges varied. The soil pH was significantly or very significantly correlated with N (NH4+ and NO3-), available K, Cu, Fe, and exchangeable Ca for the October 2008 samples, while a significant or very significant correlation existed between N (NH4+), available P, Zn, exchangeable Ca, and exchangeable Mg for the April 2009 samples. The correlations between soil pH and the amounts of available nutrients and organic matter (O.M.) along the rows of trees in September 2009 were nearly consistent with those between the rows.  相似文献   

14.
This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.  相似文献   

15.
Evaluation of 59Fe-lignosulfonates complexes as Fe-sources for plants   总被引:1,自引:0,他引:1  
Iron chlorosis is a wide-spread limiting factor of production in agriculture. To cope with this problem, synthetic chelates (like EDTA or EDDHA) of Fe are used in foliar-spray or in soil treatments; however, these products are very expensive. Therefore paper-production byproducts, like Lignosulfonates (LS), with varying content of carboxylate and sulfonate groups, were tested with respect to their ability to maintain Fe in the solution of soils and to feed plants grown in hydroponics with Fe through foliar sprays or application to the nutrient solution. Results show that LS had a low capability to solubilize 59Fe-hydroxide and that preformed 59Fe(III)-LS complexes had poor mobility through a soil column (pH 7.5) and scarce stability when interacting with soils compared to 59Fe(III)-EDDHA. However when 59Fe(III)-LS were supplied to roots in a hydroponic system, they demonstrated an even higher capability to fed Fe-deficient tomato plants than 59Fe(III)-EDDHA. Hence, data here presented indicate that the low Fe use efficiency from Fe-LS observed in soil-applications is due to interactions of these Fe-sources with soil colloids rather than to the low capability of roots to use them. Foliar application experiments of 59Fe(III)-LS or 59Fe(III)-EDTA to Fe-deficient cucumber plants show that uptake and reduction rates of Fe were similar between all these complexes; on the other hand, when 59Fe(III)-LS were sprayed on Fe-deficient tomato leaves, they showed a lower uptake rate, but a similar reduction rate, than 59Fe(III)-EDTA did. In conclusion, Fe-LS may be a valid, eco-compatible and cheap alternative to synthetic chelates in dealing with Fe chlorosis when applied foliarly or in the nutrient solution of hydroponically grown plants.  相似文献   

16.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

17.
黄瓜叶片对草酸铁的还原作用   总被引:2,自引:0,他引:2  
铁还原作用在植物叶片对铁素吸收及利用过程中起关键作用.本研究表明相对于其它几种常用的铁螯合物如二乙基四乙酸铁(FeⅢEDTA)或柠檬酸铁,草酸铁更有利于黄瓜活体叶片及铁还原酶的作用,即表现出更高的铁还原活力.缺铁降低了黄瓜叶片中的铁还原活性.缺铁时叶片中的草酸含量不受影响,而富含在石灰性缺铁土壤中的碳酸氢根离子能使叶片中草酸含量显著提高.  相似文献   

18.
Root exudates as mediators of mineral acquisition in low-nutrient environments   总被引:39,自引:3,他引:36  
Plant developmental processes are controlled by internal signals that depend on the adequate supply of mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major constraint to plant growth in many environments of the world, especially the tropics where soils are extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where micro-organisms interact with plant products in root exudates. Plant root exudates consist of a complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines, nucleosides, inorganic ions (e.g. HCO3 , OH, H+), gaseous molecules (CO2, H2), enzymes and root border cells which have major direct or indirect effects on the acquisition of mineral nutrients required for plant growth. Phenolics and aldonic acids exuded directly by roots of N2-fixing legumes serve as major signals to Rhizobiaceae bacteria which form root nodules where N2 is reduced to ammonia. Some of the same compounds affect development of mycorrhizal fungi that are crucial for phosphate uptake. Plants growing in low-nutrient environments also employ root exudates in ways other than as symbiotic signals to soil microbes involved in nutrient procurement. Extracellular enzymes release P from organic compounds, and several types of molecules increase iron availability through chelation. Organic acids from root exudates can solubilize unavailable soil Ca, Fe and Al phosphates. Plants growing on nitrate generally maintain electronic neutrality by releasing an excess of anions, including hydroxyl ions. Legumes, which can grow well without nitrate through the benefits of N2 reduction in the root nodules, must release a net excess of protons. These protons can markedly lower rhizosphere pH and decrease the availability of some mineral nutrients as well as the effective functioning of some soil bacteria, such as the rhizobial bacteria themselves. Thus, environments which are naturally very acidic can pose a challenge to nutrient acquisition by plant roots, and threaten the survival of many beneficial microbes including the roots themselves. A few plants such as Rooibos tea (Aspalathus linearis L.) actively modify their rhizosphere pH by extruding OH and HCO3 to facilitate growth in low pH soils (pH 3 – 5). Our current understanding of how plants use root exudates to modify rhizosphere pH and the potential benefits associated with such processes are assessed in this review.  相似文献   

19.
The role of phytochelates in plant growth and productivity   总被引:1,自引:0,他引:1  
Plants require minimal amounts of certain metals (Zn,Fe,Cu,etc) for optimal growth and productivity, but excess of these metals leads to cell death. When growth is limited by metal excess or metal deficiency plants respond by synthesizing nonproteinogenic chelating substances. Phytosiderophores are secreted by roots of iron deficient grasses and are important in providing sufficient Fe for normal growth. In response to growth-inhibitory levels of heavy metals plants synthesize metal-binding phytochelatins which detoxify excess metals. Biostimulants such as humic substances and oligomers of lactic acid have properties in common with both phytosiderophores and phytochelatins. The word phytochelates is proposed as a generic term to cover substances that affect plant growth by acting as chelating agents.  相似文献   

20.
Zhang  F. S. 《Plant and Soil》1993,155(1):111-114
Phytosiderophores released by roots of iron-deficient grasses mobilise Fe, Zn, Mn and Cu in calcareous soils. Mobilisation of Fe, Zn and Cu can be explained as the chelation of these metal cations by phytosiderophores. Mobilisation of Mn could not be so explained because phytosiderophores have a much smaller affinity for Mn than for Fe, Cu and Zn. Model experiments have been made with freshly precipitated Fe(OH)3 and different soils to study the mobilisation of iron and manganese by plant-borne chelating phytosiderophores, the synthetic metal chelators DTPA and the microbial metal chelator sulphonated ferrioxamine B (FOB). Compared with the synthetic chelator DTPA, the plant-borne chelating phytosiderophores mobilised Fe very efficiently, but no change was observed in the Mn mobilisation by phytosiderophores.Different phytosiderophores, as well as the microbial metal chelator FOB, were used to compare the mobilisation of iron and manganese in a calcareous soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号