首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymidine kinase type II is an important part of the pyrimidine salvage pathway. The thymidine kinase gene from the thermophilic eubacterium Rhodothermus marinus was cloned, sequenced and overexpressed. The gene is 639 bp and encodes a protein of 213 amino acids with a calculated molecular mass of 23.6 kDa. It shows homology to other thymidine kinase proteins from eukaryotic and prokaryotic organisms. The recombinant protein is inhibited by dNTPs but not by dNDPs. It is a tetramer in its native state. Its optimum temperature of activity is 65 degrees C and it has a half life of 15 min at 90 degrees C. This is the first thymidine kinase to be described from a thermophilic bacterium.  相似文献   

2.
3.
4.
The alternative sigma factor, RpoS has been described as a central regulator of many stationary phase-inducible genes and a master stress-response regulator under various stress conditions. We constructed an rpoS mutant in Pseudomonas aeruginosa and investigated the role of rpoS gene in antibiotic tolerance. The survival of the rpoS mutant cells in stationary phase was approximately 70 times lower when compared with that of the parental strain at 37 degrees C for 2 h after the addition of biapenem. For imipenem, the survival was approximately 40 times lower. Heat stress promoted an increase in the survival of the parental strain to biapenem, but the same was not found to be the case for the rpoS mutant. Our results indicate that rpoS gene is involved in tolerance to antibiotics in P. aeruginosa during the stationary phase and heat stress. However, under osmotic stress, tolerance to biapenem was not dependent on the rpoS gene.  相似文献   

5.
6.
7.
8.
The exbBD genes of Pseudomonas aeruginosa PAO were cloned by complementation of the growth defect of an Escherichia coli exbB tolQ double mutant on iron-restricted medium. Nucleotide sequence analysis confirmed that these genes are contiguous and preceded by a second tonB gene in this organism, which we have designated tonB2. lacZ promoter fusions confirmed that expression of the tonB2-exbB-exbD genes is increased under conditions of iron limitation. Deletions within any of these genes, in contrast to deletions in the first tonB gene, tonB1, did not adversely affect growth on iron-restricted medium. On the other hand, tonB1 tonB2 double mutants were more compromised as regards growth in an iron-restricted medium than a tonB1 deletion, indicating that TonB2 could partially replace TonB1 in its role in iron acquisition. TonB1 but not TonB2 deletion strains were also compromised as regards the utilization of hemin or hemoglobin as sole iron sources, indicating that heme transport requires TonB1.  相似文献   

9.
10.
11.
The sigma factor RpoS (sigmaS) has been described as a general stress response regulator that controls the expression of genes which confer increased resistance to various stresses in some gram-negative bacteria. To elucidate the role of RpoS in Pseudomonas aeruginosa physiology and pathogenesis, we constructed rpoS mutants in several strains of P. aeruginosa, including PAO1. The PAO1 rpoS mutant was subjected to various environmental stresses, and we compared the resistance phenotype of the mutant to that of the parent. The PAO1 rpoS mutant was slightly more sensitive to carbon starvation than the wild-type strain, but this phenotype was obvious only when the cells were grown in a medium supplemented with glucose as the sole carbon source. In addition, the PAO1 rpoS mutant was hypersensitive to heat shock at 50 degrees C, increased osmolarity, and prolonged exposure to high concentrations of H2O2. In accordance with the hypersensitivity to H2O2, catalase production was 60% lower in the rpoS mutant than in the parent strain. We also assessed the role of RpoS in the production of several exoproducts known to be important for virulence of P. aeruginosa. The rpoS mutant produced 50% less exotoxin A, but it produced only slightly smaller amounts of elastase and LasA protease than the parent strain. The levels of phospholipase C and casein-degrading proteases were unaffected by a mutation in rpoS in PAO1. The rpoS mutation resulted in the increased production of the phenazine antibiotic pyocyanin and the siderophore pyoverdine. This increased pyocyanin production may be responsible for the enhanced virulence of the PAO1 rpoS mutant that was observed in a rat chronic-lung-infection model. In addition, the rpoS mutant displayed an altered twitching-motility phenotype, suggesting that the colonization factors, type IV fimbriae, were affected. Finally, in an alginate-overproducing cystic fibrosis (CF) isolate, FRD1, the rpoS101::aacCI mutation almost completely abolished the production of alginate when the bacterium was grown in a liquid medium. On a solid medium, the FRD1 rpoS mutant produced approximately 70% less alginate than did the wild-type strain. Thus, our data indicate that although some of the functions of RpoS in P. aeruginosa physiology are similar to RpoS functions in other gram-negative bacteria, it also has some functions unique to this bacterium.  相似文献   

12.
13.
Three genes from Pseudomonas aeruginosa involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrc genes lie at the thr locus of the P. aeruginosa chromosome map (31 min) and are likely to be organized in a bicistronic operon. The encoded proteins are quite similar to the Hom and TS proteins from other bacterial species. The thrB gene was located by pulsed-field gel electrophoresis experiments at 10 min on the chromosome map. The product of this gene does not share any similarity with other known ThrB proteins. No phenotype could be detected when the chromosomal thrB gene was inactivated by an insertion. Therefore the existence of isozymes for this activity is postulated. HDH activity was feedback inhibited by threonine; the expression of all three genes was constitutive. The overall organization of these three genes appears to differ from that in other bacterial species.  相似文献   

14.
15.
铜绿假单胞菌为专性需氧非发酵革兰氏阴性杆菌,是医院感染的常见条件致病菌之一,可引起呼吸道、泌尿道、烧伤创面和菌血症等严重感染.铜绿假单胞菌耐药形势日益严峻,给临床治疗带来困难.必需基因是生长过程中必不可少的看家基因,对铜绿假单胞菌必需基因进行深入研究,不仅有助于了解细菌的生长、毒力等基本特性,也有助于筛选新的抗菌药物靶...  相似文献   

16.
We investigated the regulation of the psbA and pvdA pyoverdine biosynthesis genes, which encode the L-ornithine N(5)-oxygenase homologues in Pseudomonas strain B10 and Pseudomonas aeruginosa PAO1, respectively. We demonstrate that pyoverdine(B10), as the end product of its biosynthetic pathway, is a key participant of the control circuit regulating its own production in Pseudomonas strain B10. In P. aeruginosa PAO1, however, pyoverdine(PAO1) has no apparent role in the positive regulation of the pvdA gene.  相似文献   

17.
18.
N-acylhomoserine lactone (AHSL, autoinducer) is capable of regulating a set of genes by sensing cell density and developing an intercellular communication in Pseudomonas aeruginosa. Addition of AHSL in the exponential growth phase, regardless of cell density, induces a repression of cell growth of P. aeruginosa, an expression of stationary phase specific factor σs in vivo and a morphological change into smaller spherical shape indistinguishable from that in the stationary phase. It is demonstrated that AHSL can trigger an entry of bacteria into stationary phase as a growth controlling signal.  相似文献   

19.
20.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC3 and PC4, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were not complemented by the P. aeruginosa cheY and cheZ genes, which had been previously cloned (Masduki et al., J. Bacteriol., 177, 948-952, 1995). DNA sequences downstream of the cheY and cheZ genes were able to complement PC3 but not PC4. Sequence analysis of a 9.7-kb region directly downstream of the cheZ gene found three chemotaxis genes, cheA, cheB, and cheW, and seven unknown open reading frames (ORFs). The predicted translation products of the cheA, cheB, and cheW genes showed 33, 36, and 31% amino acid identity with Escherichia coli CheA, CheB, and CheW, respectively. Two of the unknown ORFs, ORF1 and ORF2, encoded putative polypeptides that resembled Bacillus subtilis MotA (40% amino acid identity) and MotB (34% amino acid identity) proteins, respectively. Although P. aeruginosa was found to have proteins similar to the enteric chemotaxis proteins CheA, CheB, CheW, CheY, and CheZ, the gene encoding a CheR homologue did not reside in the chemotaxis gene cluster. The P. aeruginosa cheR gene could be cloned by phenotypic complementation of the PC4 mutant. This gene was located at least 1,800 kb away from the chemotaxis gene cluster and encoded a putative polypeptide that had 32% amino acid identity with E. coli CheR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号