首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orchid seed physiology is a poorly understood phenomenon owing to an emphasis on production and the challenges associated with propagating orchids from minute seed. We investigated the role of simulated south Florida temperatures and illumination (dark and 12 h photoperiod) in regulating germination and seedling development using asymbiotic seed germination assays of Bletia purpurea. Our objectives were to determine whether in situ germination is limited by seasonal temperatures and to determine whether temperature alters responses to illumination. Bletia purpurea seeds were able to germinate to > 90% under all treatments. The greatest germination after 3 weeks was observed at 29/19°C under continual darkness and at 25°C under dark and illuminated conditions. The slowest germination was observed at simulated winter temperatures (22/11°C). Illumination initially inhibited germination and development, but resulted in equal or greater development by week six. Germination under 22/11°C was strongly inhibited by illumination, indicating an interaction between temperature and light sensing systems.  相似文献   

2.
研究了云南萝芙木(Rauvolfia yunnanensis)种子吸水及内源萌发抑制物特性,探讨了赤霉素浓度、温度和光照对种子萌发的影响。结果表明:云南萝芙木新鲜饱满种子28℃和31℃/22℃光照或黑暗下1个月内不萌发,种子胚已分化发育完全,种皮透水,种仁含有萌发抑制物,GA可促进种子萌发,说明云南萝芙木种子具有浅度生理休眠。400-1800mg·L-1是打破云南萝芙木种子休眠的适宜GA处理浓度范围。云南萝芙木种子的适宜萌发温度范围为22~2822和31℃/22℃变温,28%发芽指数最高,1023种子不萌发。云南萝芙木种子在周期性光照和全黑暗下均可萌发,但31℃和31℃/22℃下周期性光照促进种子萌发。  相似文献   

3.
The butenolide, 3-methyl-2H-furo[2, 3-c]pyran-2-one, is an highly active compound isolated from plant-derived smoke. This compound is known to stimulate seed germination in a wide range of plants akin to smoke or aqueous extracts of smoke. The present study attempted to elucidate the role of the butenolide in overcoming detrimental effects of low and high temperatures on tomato seed germination and seedling growth. The germination percentage followed a parabolic curve for temperatures ranging from 10 to 40°C, with 25°C being the optimum for all treatments. Control seeds showed radicle emergence at two extreme temperatures (10 and 40°C) and seedlings failed to develop further, even upon prolonged incubation. By comparison the butenolide-treated seeds grew into phenotypically normal seedlings at these non-optimum temperatures. The smoke–water-treated seeds had an intermediate response as only a fraction of germinated seed developed into normal seedlings. Seedling vigour indices as well as seedling weight were significantly higher (p ≤ 0.05) for butenolide-treated seeds at all temperatures. Furthermore, seedlings developed in the presence of the butenolide had about a 1:1 correspondence between root and shoot length. Butenolide-treated seeds grew better than the control seeds in the temperature shift experiments. A gradual decline in the vigour index values was recorded with an increased duration of incubation at the extreme temperatures. Results of the present study are very important from an horticultural point of view as they indicate the potential use of the butenolide compound in restoring normal seed germination and seedling establishment in tomato below and above optimum temperatures.  相似文献   

4.
Scorpiurus subvillosus L., wide spread in pastures of Mediterranean basin, is disappearing in the native pastures of the Hyblean plateau (Sicily, southern Italy), because of overgrazing and intensive management techniques. Moreover, it exhibits seed coat dormancy, which delays and reduces germination preventing its diffusion. This paper represents a first attempt in order to investigate changing in germination determined by storage time and temperature on seeds of two populations of S. subvillosus. Germination of S.␣subvillosus seeds was tested in relation to four storage time (30, 130, 200 and 360 days after harvest (DAH)), eight constant temperatures (5, 10, 15, 20, 25, 30, 35 and 40°C) and two populations of different provenience (30 and 600 m above mean sea level). The experiments were conducted either on scarified and unscarified seeds. In S. subvillosus the failure of germination under favourable conditions must be attributed␣only to seed coat, since seed scarification enhanced germination percentage with values up to 100% at almost all tested temperatures. In both treatments, but with a grater incidence in unscarified, seed germination increased gradually as temperature raised, peaking at 20–25°C, then declined with further increases of temperatures. At 40°C no germination occurred. Storage time induced a softening effect, which is somewhat limited by the natural ageing of seeds occurring from about 6 months after harvest.  相似文献   

5.
林线树种太白红杉种子萌发的生理生态特性   总被引:6,自引:0,他引:6       下载免费PDF全文
张玲 《植物生态学报》2004,28(4):579-58
 太白红杉(Larix chinensis)是太白山的高山林线树种。通过在人工气候室内的试验,研究了太白红杉种子在6种不同的光照与温度组合处理条件下的萌发特性。结果表明:在恒温和变温两种条件下,交替光照对于种子吸胀后的脱落酸(ABA)和赤霉素 (GA)有刺激作用。在恒温条件下,持续光照对于种子吸胀后的生长素 (IAA)有刺激作用,而变温条件下交替光照对生长素有刺激作用。细胞分裂素(CTK)的变化情况与IAA相反。光照条件相同时,恒温条件下的植物激素含量要高于变温条件下的含量,说明恒温对于各种激素有刺激作用。在25 ℃环境下种子的萌发率高于在12 ℃环境下的萌发率,说明温度对于种子的萌发有重要作用。太白红杉种子的萌发受交替光照(12 h光照/12 h黑暗)的刺激;恒温(25 ℃)条件下的种子萌发率高于变温(12 ℃/25 ℃)条件下的种子萌发率。实验结果反映了内源激素在太白红杉种子萌发过程中起着重要作用。  相似文献   

6.
Vegetation recovery on Mount Koma, Hokkaido, Japan, has been slow after the catastrophic eruption in 1929, due to undeveloped soil and limited plant colonization. Nowadays, the seedling establishment is supported mostly by a nurse plant, Salix reinii forming shrub patches, facilitates the plant colonization. Although the effects of shrub patches should differ with patch sizes, the size effects have not been examined well. To examine the size effects, seed-sowing experiments were conducted on two common pioneer herbaceous species, Miscanthus sinensis and Polygonum sachalinense, in the field. The seed germination and seedling survival were monitored by the seeds sown into S. reinii patches (0.97 m2–4.12 m2 in area) for 4 months during snow-free periods. Microenvironments altered by the patches were measured. Lab-experiments were performed to characterize the seed germination and seedling growth.Larger patches decreased light intensity and temperature more and increased litter and water content. The large patches promoted the seed germination of the two species. Interspecific interactions, examined by a seed mixture experiment, showed that the interaction increased the seed germination on M. sinensis and decreased that on P. sachalinense. On the lab-experiments at three temperatures (15, 20 and 25 °C), M. sinensis seeds germinated more at higher temperatures and obtained higher seedlings biomass. P. sachalinense germinated the seeds more at 20 °C and grew faster at lower temperatures. The total biomass of the two species was reduced by shade that intercepted 50% of light intensity. The seed germination and seedling growth of these two species became higher on litter with 2 cm in depth than on no litter. Soil water supported seed germination when the seeds of these two species were mixed while the water reduced the growth of P. sachalinense seedlings. Therefore, the dry soils were suitable for their growths. In all the treatments, P. sachalinense seedlings showed higher mortalities than M. sinensis.In conclusion, the large patches facilitated more to the colonization of pioneer plants via seed germination and growth. Large patches acted as a nursery supporting the natural regeneration in the disturbed area by improving litter accumulation, maintaining soil water, reducing strong light and/or protecting from heat.  相似文献   

7.
Aristolochiaceae have been described as having seeds with underdeveloped embryos and morphological or morphophysiological dormancy. Aristolochia galeata is a native climber found in the Cerrado biome, associated with road and gallery forest edges. The aims of this study were to investigate: embryo growth rate, morphology and seed germination parameters under different treatments. Embryos were excised to obtain embryo length at four stages: initial, seeds after coat rupture, radicle tip protrusion and cotyledon emergence from the seed coat. Germination tests were conducted at 30 °C under three nitrate concentrations (1, 10 and 20 mM), fluctuating temperature (27/20 °C) and light and dark conditions. We found that seeds have underdeveloped embryos, which take about 301 ± 178 h (±SD) to achieve seed coat rupture, another 205 ± 126 h to reach radicle protrusion and 176 ± 76 h more to the final stage of cotyledon emergence. Germinability was above 52% in all treatments, except in the dark (15%). For all treatments, average germination time was above 290 ± 123 h. Potassium nitrate increased germinability to >87%. No particular treatment was required for embryo development, but seeds in the population that continued to germinate after 1 month were probably in various states of non-deep, simple morphophysiological dormancy. Increased germinability in nitrate treatments and light requirement for germination could prevent germination under unsuitable environmental conditions and be a strategy to increase seedling establishment in the cerrado.  相似文献   

8.
  • Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality.
  • Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C.
  • Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR‐rich light.
  • This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource‐limited conditions.
  相似文献   

9.
Aim of this study was to investigate the nature of dormancy in black henbane (Hyoscyamus niger) seeds which have low germination rate under normal laboratory conditions. To do this, before placing the seeds in Petri dishes, they were soaked in 5,10 and 15 mg/L GA; 1,2 and 3% H2SO4, 15 mg/L GA + 1% H2SO4, 0.01 M KNO3 solutions, tap water, 40, 50 and 60°C hot water for 30 min. The study was performed under both continuous illumination and darkness in growth chambers to evaluate the effect of light on germination rate. The results showed that H2SO4 and GA treatments were the most important factors affecting seed germination and their germination enhancing effects were more evident in darkness. The results also suggested that black henbane seeds exhibit double dormancy involving a hard seed coat and a partially dormant embryo and have a partial dark requirement to germinate.  相似文献   

10.
Seed responses to temperature are often essential to the study of germination ecology, but the ecological role of temperature in orchid seed germination remains uncertain. The response of orchid seeds to cold stratification have been studied, but the exact physiological role remains unclear. No studies exist that compare the effects of either cold stratification or temperature on germination among distant populations of the same species. In two separate experiments, the role of temperature (25, 22/11, 27/15, 29/19, 33/24°C) and chilling at 10°C on in vitro seed germination were investigated using distant populations of Calopogon tuberosus var. tuberosus. Cooler temperatures promoted germination of Michigan seeds; warmer temperatures promoted germination of South Carolina and north central Florida seeds. South Florida seed germination was highest under both warm and cool temperatures. More advanced seedling development generally occurred at higher temperatures with the exception of south Florida seedlings, in which the warmest temperature suppressed development. Fluctuating diurnal temperatures were more beneficial for germination compared to constant temperatures. Cold stratification had a positive effect on germination among all populations, but South Carolina seeds required the longest chilling treatments to obtain maximum germination. Results from the cold stratification experiment indicate that a physiological dormancy is present, but the degree of dormancy varies across the species range. The variable responses among populations may indicate ecotypic differentiation.  相似文献   

11.
Arisaema dracontium (green dragon) is a perennial herb that is widely distributed in eastern North America. However, in Canada, at the northern edge of its distribution, the species is designated as “vulnerable” with respect to conservation status. In natural populations, seedlings are uncommon; the present study was undertaken in order to characterize seed and seedling properties in green dragon. Seeds were sampled from five sites, ranging from Ontario at the northern limit of the distribution range, to Louisiana in the south. Seed germinability ranged from 25 to 55%, depending upon source. Experiments indicated that neither the hard seed coat nor a water-soluble exudate from the seed was responsible for inducing or maintaining dormancy. Patterns of seed germination appear to reflect general climatic conditions at the sites where seeds had originated. Cold stratification at 3°C produced significantly greater relative germinability in all seed collections except the most southerly one, from Baton Rouge. These seeds also had a slower overall speed of germination. In contrast, germination of seeds from the most northerly site was promoted by cold stratification and occurred over a relatively brief period. Germination in alternating light and dark conditions decreased the speed of germination compared to germination in the dark, however exposure to light changed the phenology of germination by promoting development of adventitious roots and primary leaves in these seedlings.  相似文献   

12.
曼陀罗种子休眠机理与破眠方法研究   总被引:6,自引:0,他引:6  
通过对曼陀罗种子生活力测定、发芽试验、吸水率测定及种子萌发抑制物研究,揭示曼陀罗种子休眠机理,并利用物理、化学法处理曼陀罗种子,以探寻打破曼陀罗种子休眠的最佳方法.结果表明:(1)新采收的曼陀罗种子为综合休眠,休眠原因包括:种皮障碍、缺少萌发所需激素以及种皮和种仁中存在萌发抑制物,其中种皮障碍是限制种子萌发的首要因素.(2)室温存储6个月可解除曼陀罗种子种仁的休眠,但种皮障碍始终是其种子萌发的限制因素.(3)机械摩擦、浓H2SO4处理和NaOH处理均可打破除曼陀罗种皮的休眠障碍,促进种子萌发,其中用10% NaOH处理90 min为破除曼陀罗种皮休眠障碍的最佳方法,且发芽率比对照提高了83%.  相似文献   

13.
The seed germination and seedling establishment ofAlisma gramineum, A. lanceolatum andA. plantago-aquatica were investigated to find differences in the reproductive strategy of these species and to explain their ecological and distributional differentiation. The influences of stratification, temperature and flooding on seed germination, winter survival of seedlings and their further development were tested in the laboratory and in the experimental garden. Seeds of the all species studied were dormant immediately after harvesting. Cold stratification was necessary for successful germination. Seeds germinated best under shallow water in temperatures of 25 °C and 25/10 °C and did not need fluctuating day/night temperatures to break dormancy. Seedlings established best under the limosal-terrestrial conditions in summer, and overwintered successfully only when flooded. The main interspecific differences found were in the percentage of germinative and dormant seeds, in the germination rates after individual treatments, in the course of ontogenetic development and in the longevity as well as in the resistance of vegetative organs to environmental conditions. Possible effects of the above-listed facts on the ecological amplitude and distribution of the studied species are discussed.  相似文献   

14.
Germination responses ofRhus javanica L. seeds to temperature and light were investigated with special reference to their gap-detecting mechanisms in germination, i.e., responses to elevated and/or fluctuating temperatures and sensitivity to leaf-canopy transmitted light. The seeds, which have water-impermeable coats to prevent imbibition, were shown to become permeable and germinable after exposure to higher temperatures of 48–74°C for a brief period depending on the temperature. Once the coat impermeability had been removed by such heat treatment, the seeds became readily germinable over a wide range of temperature and light conditions. The lower and higher temperature limits for germination were around 8° and 36°C, respectively, with an optimal temperature of around 25°C. Simple linear relationships were observed between the temperature and germination rates, i.e., the reciprocals of the time taken by the seed subpopulations to show 10–70% germination in the sub-optimal temperature range, where the required ‘thermal time’ for germination was 2300–3600 Kh. The presence or absence of light or a simulated ‘canopy light’ had little effect on the germination of this species. It was concluded that the seeds ofR. javanica are furnished with a gap-detecting mechanism in the form of a heat requirement for the breakage of water-impermeable seed dormancy, which may be fulfilled by either daytime elevation of the surface temperature of exposed soil, or more effectively by fire.  相似文献   

15.
Cyclamen persicum Mill, seeds germinate in a narrow range oftemperature and germination is strongly inhibited by continuousirradiation with white light. The thermal optimum is approx.15 °C in both darkness and light. Seed germination is alsovery sensitive to oxygen deprivation and this sensitivity ismore pronounced at 20 °C than at the optimum 15 °C.Very immature seeds cannot germinate at any temperature, butgerminability increases during seed maturation Seedling development is unusual since seed reserves are usedimmediately for tuber formation. Tuberization is optimal at15–20 °C in light and in darkness. Supra-optimal temperatures(25–30 °C) or hypoxia inhibit tuber formation andlead to very elongated tubers These results allow the producers to improve the productionof homogeneous populations of cyclamen seedlings Wheat seeds, Triticum aestwum L., acetylcholinesterase, electrophoresis, germination, assay  相似文献   

16.
以香圆(Citrus wilsonii Tanaka)种子为实验材料,通过测定种皮透水性、种皮机械障碍、发芽温度等对种子萌发的影响从而探讨种子萌发特征;通过切割种子、热水浸种、赤霉素浸种、低温层积等处理方式探索种子的催芽方法。结果显示:香圆种皮不存在透水性障碍,但其机械障碍对种子萌发具有抑制作用,且内种皮对萌发影响较大;种子在15℃、25℃、35℃恒温及15℃/30℃变温条件下均可萌发,其最适萌发温度为25℃;采用低温层积、热水浸种、切除1/3种子等方法均可一定程度上促进种子萌发。生产中宜采用始温60℃热水浸种24h的方法对香圆种子进行催芽。  相似文献   

17.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

18.
Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of Kingdom of Saudi Arabia, where it is a medicinally important species for the people in Saudi Arabia. Seeds of this species were collected from Mount Atharb in Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 min, immersion in boiling water for 10 min and exposure to 50 °C for 1 min. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35 °C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in different concentrations of mM NaCl in the light at 25 °C.Untreated seeds had low final germination 30%. Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25 °C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5 and 25 °C but germination was inhibited by higher temperatures (30 and 35 °C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition.  相似文献   

19.
We aimed to determine the ecological role of three seed morphs observed for the first time in a desert population of Lotononis platycarpa (Fabaceae), with respect to their germination requirements. Seeds sorted by seed coat colour (olive green, orange and brown) were germinated under laboratory conditions under two photoperiods (12/12‐h light and continuous dark) and three alternating temperature regimes (15/25, 20/30, 25/35°C). We found that the three distinct seed types differ in their seed mass, germination percentage and speed of germination. Overall, the light‐incubated seeds germinated with higher percentages than seeds in the total darkness. Furthermore, seeds with orange coat germinated with higher percentages at 15/25 and 25/35°C (up to 60%, for both) and significantly faster than the other two colour morphs. Our results suggest an adaptive significance of seed colour heterogeneity in the harsh desert habitat inhabited by the study species.  相似文献   

20.
《Flora》2006,201(2):135-143
The effects of time of seed maturation and dry seed storage and of light and temperature requirements during seed incubation on final germination percentage and germination rate were assessed for the invasive shrub Prosopis juliflora (Sw.) D.C., grown under desert environmental conditions of the United Arab Emirates (UAE). Seeds were collected from Fujira on the northern coast of the UAE at different times during the growing seasons (autumn, winter and spring) and were germinated immediately and after 8 months of dry storage under room temperature (20±3 °C). Seeds were germinated at three temperatures (15, 25 and 40 °C) in both continuous light and darkness. The results showed significant effects for time of seed collection, seed storage, light and temperature of seed incubation and many of their interactions on both germination percentage and rate. Fresh seeds matured during autumn and winter germinated significantly greater at 40 °C and in light than at lower temperatures and in dark. Storage significantly increased germination percentage and rate; the increase was greater for seeds matured during winter than for seeds matured during spring. This indicates that dormancy breakage was greater in seeds of winter than seeds of spring. The need for high temperature to achieve greater germination was significantly reduced after seed storage, especially for seeds matured in autumn and winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号