首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sommer RJ  Ogawa A 《Current biology : CB》2011,21(18):R758-R766
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as?a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its?ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.  相似文献   

2.
Polyphenisms—the expression of discrete phenotypic morphs in response to environmental variation—are examples of phenotypic plasticity that may potentially be adaptive in the face of predictable environmental heterogeneity. In the butterfly Bicyclus anynana, we examine the hormonal regulation of phenotypic plasticity that involves divergent developmental trajectories into distinct adult morphs for a suite of traits as an adaptation to contrasting seasonal environments. This polyphenism is induced by temperature during development and mediated by ecdysteroid hormones. We reared larvae at separate temperatures spanning the natural range of seasonal environments and measured reaction norms for ecdysteroids, juvenile hormones (JHs) and adult fitness traits. Timing of peak ecdysteroid, but not JH titres, showed a binary response to the linear temperature gradient. Several adult traits (e.g. relative abdomen mass) responded in a similar, dimorphic manner, while others (e.g. wing pattern) showed a linear response. This study demonstrates that hormone dynamics can translate a linear environmental gradient into a discrete signal and, thus, that polyphenic differences between adult morphs can already be programmed at the stage of hormone signalling during development. The range of phenotypic responses observed within the suite of traits indicates both shared regulation and independent, trait-specific sensitivity to the hormone signal.  相似文献   

3.
Phenotypic plasticity and polyphenism, in which phenotypes can be changed depending on environmental conditions, are common in insects. Several studies focusing on physiological, developmental, and molecular processes underlying the plastic responses have revealed that similar endocrine mechanisms using juvenile hormone (JH) are used to coordinate the flexible developmental processes. This review discusses accumulated knowledge on the caste polyphenism in social insects (especially termites), the wing and the reproductive polyphenisms in aphids, and the nutritional polyphenism and sexual dimorphism in stag beetles. For the comparison with non-insect arthropods, extensive studies on the inducible defense (and reproductive polyphenism) in daphnids (crustacean) are also addressed. In all the cases, JH (and methyl farnesoate in daphnids) plays a central role in mediating environmental stimuli with morphogenetic processes. Since the synthetic pathways for juvenoids, i.e., the mevalonate pathway and downstream pathways to sesquiterpenoids, are conserved across pancrustacean lineages (crustaceans and hexapods including insects), the evolution of developmental regulation by juvenoids that control molting (ecdysis) and metamorphosis is suggested to have occurred in the ancestral arthropods. The discontinuous postembryonic development (i.e., molting) and the regulatory physiological factors (juvenoids) would have enabled plastic developmental systems observed in many arthropod lineages.  相似文献   

4.
Understanding how traits are integrated at the organismal level remains a fundamental problem at the interface of developmental and evolutionary biology. Hormones, regulatory signaling molecules that coordinate multiple developmental and physiological processes, are major determinants underlying phenotypic integration. The probably best example for this is the lipid-like juvenile hormone (JH) in insects. Here we review the manifold effects of JH, the most versatile animal hormone, with an emphasis on the fruit fly Drosophila melanogaster, an organism amenable to both genetics and endocrinology. JH affects a remarkable number of processes and traits in Drosophila development and life history, including metamorphosis, behavior, reproduction, diapause, stress resistance and aging. While many molecular details underlying JH signaling remain unknown, we argue that studying "hormonal pleiotropy" offers intriguing insights into phenotypic integration and the mechanisms underlying life history evolution. In particular, we illustrate the role of JH as a key mediator of life history trade-offs.  相似文献   

5.
6.
Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of surviving in the presence of predators (an innovation) or if it represents a simple extension of the way noninduced tadpoles survive predation. Tadpoles of Limnodynastes peronii were raised in the presence and absence of predation, which then entered a survival experiment. Induced morphological traits, primarily tail height and tail muscle height, were found to be under selection, indicating that predator-mediated phenotypic plasticity may be adaptive. Although predator-induced animals survived better, the multivariate linear selection gradients were similar between the two tadpole groups, suggesting that predator-mediated phenotypic plasticity is an extension of existing survival strategies. In addition, nonlinear selection gradients indicated a cost of predator-induced plasticity that may limit the ability of phenotypic plasticity to enhance survival in the presence of predators.  相似文献   

7.

Background

Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera).

Results

Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation.

Conclusions

It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.
  相似文献   

8.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

9.
The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch‐controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony‐level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding‐regime‐mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.  相似文献   

10.
Anuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well. In anuran larvae, thyroid hormone (TH) levels control growth and developmental rate and changes in TH status are a well-known stress response to sub-optimal environmental conditions. We investigated how chemically altered TH levels affect the capacity to exhibit temperature-induced developmental plasticity in larvae of the African clawed frog (Xenopus laevis) and the common frog (Rana temporaria). In both species, TH level influenced growth and developmental rate and modified the capacity for temperature-induced developmental plasticity. High TH levels reduced thermal sensitivity of metamorphic traits up to 57% (R. temporaria) and 36% (X. laevis). Rates of growth and development were more plastic in response to temperature in X. laevis (+30%) than in R. temporaria (+6%). Plasticity in rates of growth and development is beneficial to larvae in heterogeneous habitats as it allows a more rapid transition into the juvenile stage where rates of mortality are lower. Therefore, environmental stressors that increase endogenous TH levels and reduce temperature-dependent plasticity may increase risks and the vulnerability of anuran larvae. As TH status also influences metabolism, future studies should investigate whether reductions in physiological plasticity also increases the vulnerability of tadpoles to global change.  相似文献   

11.
Gene regulation,quantitative genetics and the evolution of reaction norms   总被引:12,自引:0,他引:12  
Summary The ideas of phenotypic plasticity and of reaction norm are gaining prominence as important components of theories of phenotypic evolution. Our understanding of the role of phenotypic plasticity as an adaptation of organisms to variable environments will depend on (1) the form(s) of genetic and developmental control exerted on the shape of the reaction norm and (2) the nature of the constraints on the possible evolutionary trajectories in multiple environments. In this paper we identify two categories of genetic control of plasticity: allelic sensitivity and gene regulation. These correspond generally to two classes of response by the developmental system to environmental change: phenotypic modulation, in which plastic responses are a continuous and proportional function of environmental stimuli and developmental conversion, where responses tend to be not simply proportional to the stimuli. We propose that control of plasticity by regulatory actions has distinct advantages over simple allelic sensitivity: stability of phenotypic expression, capacity for anticipatory response and relaxation of constraints due to genetic correlations. We cite examples of the extensive molecular evidence for the existence of environmentally-cued gene regulation leading to developmental conversion. The results of quantitative genetic investigations on the genetics and evolution of plasticity, as well as the limits of current approaches are discussed. We suggest that evolution of reaction norms would be affected by the ecological context (i.e. spatial versus temporal variation, hard versus soft selection, and fine versus coarse environmental grain). We conclude by discussing some empirical approaches to address fundamental questions about plasticity evolution.  相似文献   

12.
The ability to change reproductive tactics during adult developmentin response to environmental variation is predicted to enhancefitness. Many organisms show phenotypic plasticity early innon-embryonic development, but later exhibit phases of developmentalinflexibility (=canalization). Therefore, we studied reproduction-relatedhormones and proteins and their relationships to plasticityin the Eastern lubber grasshopper. Diet-switching experimentsdemonstrated plasticity early in the egg production cycle, buta switch to canalization late in the cycle. We measured developmentaltiters of 4 hemolymph compounds from single individuals fromadult molt until first oviposition. These 4 compounds were theegg-yolk precursor protein vitellogenin, juvenile hormone (thecentral regulator of insect reproduction), major hemolymph proteins,and ecdysteroids (the arthropod molting hormone that ultimatelyis stored in the egg). Using diet manipulations, we investigatedhow these developmental titers relate to the switch from plasticto canalized egg production. All 4 hemolymph compounds reachedtheir peak levels during the canalized phase, about 12 day beforeoviposition. Diet switches after these peak levels did not affectthe timing to oviposition. Therefore, these peak titers werephysiological events that occurred after the individual committedto laying. We compared these patterns in reproduction to thedevelopment toward adult molt, another major life-history eventin insects. We observed an extended canalized phase before theadult molt. This canalized phase always included a peak of ecdysteroids.The similar patterns in the physiology of these life-historyevents suggested that common limitations may exist in majordevelopmental processes of insects that are directed by hormones.  相似文献   

13.
The key regulatory role of abscisic acid (ABA) in many physiological processes in plants is well established. However, compared with other plant hormones, the molecular mechanisms underlying ABA signalling are poorly characterized. In this work, a specific catalytic subunit of protein phosphatase 2A (PP2Ac-2) has been identified as a component of the signalling pathway that represses responses to ABA. A loss-of-function pp2ac-2 mutant is hypersensitive to ABA. Moreover, pp2ac-2 plants have altered responses in developmental and environmental processes that are mediated by ABA, such as primary and lateral root development, seed germination and responses to drought and high salt and sugar stresses. Conversely, transgenic plants overexpressing PP2Ac-2 are less sensitive to ABA than wild type, a phenotype that is manifested in all the above-mentioned physiological processes. DNA microarray hybridization experiments reveal that PP2Ac-2 is negatively involved in ABA responses through regulation of ABA-dependent gene expression. Moreover, the results obtained indicate that ABA antagonistically regulates PP2Ac-2 expression and PP2Ac-2 activity thus allowing plant sensitivity to the hormone to be reset after induction. Phenotypic, genetic and gene expression data strongly suggest that PP2Ac-2 is a negative regulator of the ABA pathway. Activity of protein phosphatase 2A thus emerges as a key element in the control of ABA signalling.  相似文献   

14.
Twenty years ago, Albert Bennett published a paper in the influential book New directions in ecological physiology arguing that individual variation was an 'underutilized resource'. In this paper, I review our state of knowledge of the magnitude, mechanisms and functional significance of phenotypic variation, plasticity and flexibility in endocrine systems, and argue for a renewed focus on inter-individual variability. This will provide challenges to conventional wisdom in endocrinology itself, e.g. re-evaluation of relatively simple, but unresolved questions such as structure-function relationships among hormones, binding globulins and receptors, and the functional significance of absolute versus relative hormone titres. However, there are also abundant opportunities for endocrinologists to contribute solid mechanistic understanding to key questions in evolutionary biology, e.g. how endocrine regulation is involved in evolution of complex suites of traits, or how hormone pleiotropy regulates trade-offs among life-history traits. This will require endocrinologists to embrace the raw material of adaptation (heritable, individual variation and phenotypic plasticity) and to take advantage of conceptual approaches widely used in evolutionary biology (selection studies, reaction norms, concepts of evolutionary design) as well as a more explicit focus on the endocrine basis of life-history traits that are of primary interest to evolutionary biologists (cf. behavioural endocrinology).  相似文献   

15.
A juvenoid compound known as methoprene has no effect on growth and respiratory metabolism in penultimate instar larvae that contain endogenous juvenile hormone. In the last larval instar the juvenoid induces enormously large somatic growth and postpones pupal ecdysis although it does not increase the overall metabolic intensity beyond certain limits.The metabolic changes caused by the juvenoid were more pronounced when connected with formation of the supernumerary larval instars. After this developmental change the larvae further continued to grow on and turned finally into the conspicuous giants. The overall metabolic capacity of the supernumerary larval tissues surpassed the above limitations determined by the body of a normal last instar larva. However, unlike in some other species, there was no hypermetabolic response to juvenoid treatments in this material.  相似文献   

16.
The endocrine system is the key mediator of environmental and developmental (internal) information, and is likely to be involved in altering the performance of animals when selection has favored phenotypic plasticity. The endocrine control of performance should be especially pronounced in animals that undergo a developmental shift in niche, such as occurs in migratory species. By way of example, I review the developmental and environmental control of the preparatory changes for seawater entry of juvenile salmon (known as smolting) and its hormonal regulation. There is a size threshold for smolt development in juvenile Atlantic salmon that results in greater sensitivity of the growth hormone and cortisol axes to changes in daylength. These hormones, in turn, have broad effects on survival, ion homeostasis, growth and swimming performance during entry into seawater. Migratory niche shifts and metamorphic events are extreme examples of the role of hormones in animal performance and represent one end of a continuum. A framework for predicting when hormones will be involved in performance of animals is presented. Endocrine involvement in performance will be more substantial when (1) selection differentials on traits underlying performance are high and temporally discontinuous over an animal's lifetime, (2) the energetic and fitness costs of maintaining performance plasticity are less than those of constant performance, (3) cues for altering performance are reliable indicators of critical environmental conditions, require neurosensory input, and minimize effects of lag, and (4) the need for coordination of organs, tissues and cells to achieve increased performance is greater. By examining these impacts of selection, endocrinologists have an opportunity to contribute to the understanding of performance, phenotypic plasticity, and the evolution of life-history traits.  相似文献   

17.
Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs.  相似文献   

18.
Developmental plasticity, a phenomenon of importance in both evolutionary biology and human studies of the developmental origins of health and disease (DOHaD), enables organisms to respond to their environment based on previous experience without changes to the underlying nucleotide sequence. Although such phenotypic responses should theoretically improve an organism's fitness and performance in its future environment, this is not always the case. Herein, we first discuss epigenetics as an adaptive mechanism of developmental plasticity and use signaling theory to provide an evolutionary context for DOHaD phenomena within a generation. Next, we utilize signalling theory to identify determinants of adaptive developmental plasticity, detect sources of random variability – also known as process errors that affect maintenance of an epigenetic signal (DNA methylation) over time, and discuss implications of these errors for an organism's health and fitness. Finally, we apply life‐course epidemiology conceptual models to inform study design and analytical strategies that are capable of parsing out the potential effects of process errors in the relationships among an organism's early environment, DNA methylation, and phenotype in a future environment. Ultimately, we hope to foster cross‐talk and interdisciplinary collaboration between evolutionary biology and DOHaD epidemiology, which have historically remained separate despite a shared interest in developmental plasticity.  相似文献   

19.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   

20.
Preexisting developmental plasticity in feeding larvae may contribute to the evolutionary transition from development with a feeding larva to nonfeeding larval development. Differences in timing of development of larval and juvenile structures (heterochronic shifts) and differences in the size of the larval body (shifts in allocation) were produced in sea urchin larvae exposed to different amounts of food in the laboratory and in the field. The changes in larval form in response to food appear to be adaptive, with increased allocation of growth to the larval apparatus for catching food when food is scarce and earlier allocation to juvenile structures when food is abundant. This phenotypic plasticity among full siblings is similar in direction to the heterochronic evolutionary changes in species that have greater nutrient reserves within the ova and do not depend on particulate planktonic food. This similarity suggests that developmental plasticity that is adaptive for feeding larvae also contributes to correlated and adaptive evolutionary changes in the transition to nonfeeding larval development. If endogenous food supplies have the same effect on morphogenesis as exogenous food supplies, then changes in genes that act during oogenesis to affect nutrient stores may be sufficient to produce correlated adaptive changes in larval development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号