首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We quantitatively assessed edge effects associated with elevated abundance of a hyper aggressive bird species, the noisy miner Manorina melanocephala, in fragmented eucalypt forest adjoining developed land. Long‐term data from Toohey Forest, subtropical Australia, show that noisy miner colonies intensively occupy a zone of 20 m from the forest edge, with frequent use occurring up to 100 m from the edge, but little beyond 200 m. Within noisy miner colonies, the abundance and species richness of other birds were both about half those recorded at nearby transects which were outside the colonies' main activity area. Bird species smaller than noisy miners, which are also those with similar diets, were collectively 20–25 times more abundant, and their species richness tenfold greater, outside miner colonies than within them, whereas larger species, which have less dietary overlap, did not differ. Exclusion of small insectivorous birds has been hypothesised to cause elevated insect herbivore density, but we found no difference between tree crown defoliation or dieback rates within versus outside miner colonies. Aggression by noisy miners can be viewed as a mechanism of interspecific competition, since miners have a relatively large body size for their diet and are hence able to exclude virtually all potential competitors at relatively little cost. We examine evidence indicating that reduced bird diversity in eucalypt forest fragments of eastern Australia is often simply the effect of noisy miner occupancy of edges, acting directly on the densities of other species through their aggressive behaviour. With an edge effect 200 m deep, a remnant 10 ha in size is likely to become entirely occupied by noisy miners, and this is a size threshold that has been commonly reported in association with area‐standardised avian diversity reductions. Convergent patterns of species loss from small forest fragments in different continents are the result of different underlying ecological processes.  相似文献   

2.
Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty‐seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two‐year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20–30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation.  相似文献   

3.
4.
In Australia, the role of noisy miners Manorina melanocephala in biotic homogenization of the avifauna has been well established in modified landscapes, and is listed as a threatening process under national conservation legislation. However, less is known about the effect of the congeneric and more widely distributed yellow‐throated miner, M. flavigula. In this paper we investigate the relative roles of habitat loss and increased dominance by the yellow‐throated miner in avian homogenization and species functional group decline. We examined bird community data collected from 368 woodland sites across three bioregions. For each site there was a local and a landscape scale measure of remnant vegetation cover. We used both multivariate and regression analysis to test the relative influence of yellow‐throated miner abundance and vegetation on bird community composition. There was clear compositional change and homogenization of the avifauna where yellow‐throated miners were present and vegetation cover was low. The abundance of 40 bird species was predicted by combinations of vegetation cover or yellow‐throated miner abundance, and 31 of these regressions included the term yellow‐throated miner. Of these, there was a negative relationship with 23 species, and 19 of these were insectivores or nectarivores. We postulate that the combination of clearing and yellow‐throated miner abundance can interact to disrupt the ecological function of woodlands, by the depletion of insect‐ and nectar‐feeding species and the disturbance to mixed feeding flocks. We propose future research objectives that include a continental‐scale analysis of the determinants of yellow‐throated miner overabundance, the numerical and geographical thresholds of their potential impacts, and the ecological consequences on both avifauna and the woodlands they inhabit.  相似文献   

5.
Overabundant native species can have a significant cascading effect on other components of wildlife, and those that deplete other species, often promoted by anthropogenic change to vegetation cover and habitat, are called reverse keystone species. Birds in the genus Manorina are widely reported as being such species, and in highly disturbed or fragmented environments, and some intact environments, noisy miners Manorina melanocephala can have a strong negative effect on small passerine species via hyper‐aggressive mobbing. The tropical savannas of northern Australia consist of largely unmodified woodlands, and two species of Manorina occur naturally in this region: the noisy miner and the yellow‐throated miner Manorina flavigula. Therefore, what effect do these species have on bird assemblage in predominantly continuous habitats, relative to other typical determinants of avifauna assemblage such as vegetation structure? We used data collected from bird surveys at 511 sites across northern Queensland (179 noisy miner M. melanocephala sites, 332 yellow‐throated miner M. flavigula sites) between 1998 and 2010. We examined the variation in bird composition at each site due to increasing abundance of Manorina spp. using uni‐ and multivariate techniques. We found total bird richness was significantly lower in sites where noisy and yellow‐throated miner abundances were highest, and passerine species seemed most affected. For species, 45 species varied significantly in abundance with increasing miner numbers, and the overall effect of yellow‐throated miners on other birds seemed more pronounced. However, vegetation structure was generally an equal or more important predictor of avifauna richness and abundance. We conclude that despite the superficially intact nature of northern Australian woodlands, pastoral intensification or poor land management might create disturbances that facilitate increases in the abundance of Manorina, causing localized overabundance and a compounding negative effect on other native bird species.  相似文献   

6.
Climate change may amplify the adverse effects of fragmentation by also affecting interspecific interactions. Increased competition may reduce the ability of already stressed species to acquire resources (breeding sites and food), reducing recruitment and the long‐term viability of species. We assessed how measures of recruitment of native birds were influenced by the area of native vegetation, vegetation characteristics, vegetation change as an indication of degradation, and the occurrence of an increasingly prevalent native competitor (the noisy miner Manorina melanocephala). We recorded avian breeding behavior on 120 forest transects in the box‐ironbark forests of south‐eastern Australia, in 2010–2011. On the same transects, we measured vegetation characteristics that had previously been measured in 1995–1997 to assess vegetation change during a 13‐yr drought. Vegetation area and the abundance of the noisy miner had a greater effect on species’ breeding behavior than did local vegetation characteristics and vegetation degradation. Greater abundances of the noisy miner reduced breeding activities of species with a body mass smaller than the noisy miner (< 63 g), while breeding increased in some larger (> 63 g) species. Recruitment measures for the noisy miner were positively associated with smaller fragments and greater vegetation change indicating that fragmentation and vegetation degradation have facilitated the colonization or recruitment by the noisy miner. The interaction between climate change, fragmentation and vegetation degradation appears to have led to increased effects of interspecific competition in fragments of native vegetation, with potential adverse effects on the viability of many bird species. The spread and increasing abundance of a hyperaggressive native species suggests that species assemblages will be increasingly disrupted by the interacting effects of climate change, fragmentation, degradation and interspecific interactions.  相似文献   

7.
Interspecific aggression by the noisy miner (Manorina melanocephala), a highly despotic species, is homogenizing woodland avifaunas across eastern Australia. Although a native species, the noisy miner's aggressive exclusion of small birds is a Key Threatening Process under national law. Large‐scale removal of noisy miners has been proposed as a management response to this threat following increases in miner presence due to anthropogenic land use practices. We tested this proposal by experimentally removing noisy miners from eucalypt woodland remnants (16–49 ha), assigned randomly as control (n = 12) or treatment (miner removal) sites (n = 12). Standardized bird surveys were conducted before and after removal, and generalized linear mixed models were used to investigate the effect of miner removal on bird assemblage metrics. Despite removing 3552 noisy miners in three sessions of systematic shooting, densities of noisy miners remained similarly high in treatment and control sites, even just 14 days after their removal. However, there was evidence of an increase in richness and abundance of small birds in treatment sites compared to controls—an effect we only expected to see if noisy miner densities were drastically reduced. We suggest that miner removal may have reduced the ability of the recolonizing miners to aggressively exclude small birds, even without substantially reducing miner densities, due to the breakdown of social structures that are central to the species' despotic behaviour. However, this effect on small birds is unlikely to persist in the long term. Synthesis and applications: Despite evidence from other studies that direct removal of noisy miners can result in rapid and sustained conservation benefit for bird communities at small scales, our findings cast doubt on the potential to scale‐up this management approach. The circumstances under which direct control of noisy miners can be achieved remain unresolved.  相似文献   

8.
Many passerine bird populations, particularly those that have open‐cup nests, are in decline in agricultural landscapes. Current theory suggests that an increase in habitat generalist predators in response to landscape change is partially responsible for these declines. However, empirical tests have failed to reach a consensus on how and through what mechanisms landscape change affects nest predation. We tested one hypothesis, the Additive Predation Model, with an artificial nest experiment in fragmented landscapes in southern Queensland, Australia. We employed structural equation modelling of the influence of the relative density of woodland and habitat generalist predators and landscape features at the nest, site, patch and landscape scales on the probability of nest predation. We found little support for the Additive Predation Model, with no significant influence of the density of woodland predators on the probability of nest predation, although landscape features at different spatial scales were important. Within woodlands fragmented by agriculture in eastern Australia, the presence of noisy miner colonies appears to influence ecological processes important for nest predation such that the Additive Predation Model does not hold. In the absence of colonies of the aggressive native bird, the noisy miner, the influence of woodland predators on the risk of artificial nest predation was low compared with that of habitat generalist predators. Outside noisy miner colonies, we found significant edge effects with greater predation rates for artificial nests within woodland patches located closer to the agricultural matrix. Furthermore, the density of habitat generalist predators increased with the extent of irrigated land‐use, suggesting that in the absence of noisy miner colonies, nest predation increases with land‐use intensity at the landscape scale.  相似文献   

9.
Understanding influences of environmental change on biodiversity requires consideration of more than just species richness. Here we present a novel framework for understanding possible changes in species' abundance structures within communities under climate change. We demonstrate this using comprehensive survey and environmental data from 1748 woody plant communities across southeast Queensland, Australia, to model rank‐abundance distributions (RADs) under current and future climates. Under current conditions, the models predicted RADs consistent with the region's dominant vegetation types. We demonstrate that under a business as usual climate scenario, total abundance and richness may decline in subtropical rainforest and shrubby heath, and increase in dry sclerophyll forests. Despite these opposing trends, we predicted evenness in the distribution of abundances between species to increase in all vegetation types. By assessing the information rich, multidimensional RAD, we show that climate‐driven changes to community abundance structures will likely vary depending on the current composition and environmental context.  相似文献   

10.
The Samcheok forest fire of April 2000 was the biggest stand-replacing fire recorded in Korea, and led to the largest-scale salvage logging operation (performed until 2005) ever implemented. We investigated the effects of the treatments performed after the fire on the breeding bird community in 2002–2005 (the management period) and 2006–2008 (the post-management period). A total of 75 line transect surveys resulted in 660 detections of 54 species in undisturbed stands (CO), in burned and naturally restored stands (NI), and in burned and logged stands (IT). Four species (Parus major, Aegithalos caudatus, Dendrocopos kizuki, and Parus ater) were identified as indicator species in CO which showed no temporal changes in bird communities and habitat structure. Among the various stand treatments, the standardized species richness was highest in CO (11.6 ± 4.6 species/transect in 2002–2005, 12.1 ± 3.5 in 2006–2008), and this richness did not change over time. On the other hand, low richness was observed in NI (6.8 ± 2.6 in 2002–2005, 9.6 ± 2.3 in 2006–2008), and the lowest richness was seen in IT (5.0 ± 2.4 in 2002–2005, 6.1 ± 1.8 in 2006–2008), but both of these increased over time. Although the bird abundances in NI and IT were lower than those in CO (38.0 ± 27.7 birds/transect in 2002–2005, 31.3 ± 10.9 in 2006–2008), the abundances in NI (15.1 ± 8.6 in 2002–2005, 17.6 ± 11.4 in 2006–2008) and IT (11.7 ± 8.3 in 2002–2005, 10.0 ± 4.6 in 2006–2008) were not significantly different. There was no significant difference in abundance between time periods for any of the stand treatments. These results imply that NI (i.e., no salvage logging) allows greater bird richness but not abundance to be recovered compared to IT. No indicator species was consistently present in NI throughout the two time periods covered due to the rapid regrowth of vegetation, but four open-habitat dwellers (Falco tinnunculus, Phoenicurus auroreus, Emberiza cioides, and Sturnus cineraceus) colonized IT during the post-management period. The bird assemblage in IT, as assessed by canonical correspondence analysis, shifted to open habitats, while the avifauna in NI became similar to that in CO over time. While post-fire treatment can provide new colonization opportunities for open-habitat dwellers, the slow colonization process, the low species richness, and the low bird abundance observed in large areas of IT indicate that post-fire treatment using salvage logging inhibits the restoration of forest bird communities by producing a poorer breeding bird community that is very different from the original one. Based on these lessons from the response to the Samcheok forest fire, we suggest that preserving as much of the disturbed forest as possible is essential, and that the current approach to post-fire treatment—intensive salvage logging—needs to be revised to ensure the effective restoration of breeding bird communities in disturbed temperate pine forests.  相似文献   

11.
Southeast Brazil is a neotropical region composed of a mosaic of different tropical habitats and mountain chains, which allowed for the formation of bird-rich communities with distinct ecological niches. Although this region has the potential to harbor a remarkable variety of avian parasites, there is a lack of information about the diversity of malarial parasites. We used molecular approaches to characterize the lineage diversity of Plasmodium and Haemoproteus in bird communities from three different habitats in southeast Brazil based on the prevalence, richness and composition of lineages. We observed an overall prevalence of 35.3%, with a local prevalence ranging from 17.2% to 54.8%. Moreover, no significant association between prevalence and habitat type could be verified (p>0.05). We identified 89 Plasmodium and 22 Haemoproteus lineages, with 86% of them described for the first time here, including an unusual infection of a non-columbiform host by a Haemoproteus (Haemoproteus) parasite. The composition analyses of the parasite communities showed that the lineage composition from Brazilian savannah and tropical dry forest was similar, but it was different from the lineage composition of Atlantic rainforest, reflecting the greater likeness of the former habitats with respect to seasonality and forest density. No significant effects of habitat type on lineage richness were observed based on GLM analyses. We also found that sites whose samples had a greater diversity of bird species showed a greater diversity of parasite lineages, providing evidence that areas with high bird richness also have high parasite richness. Our findings point to the importance of the neotropical region (southeast Brazil) as a major reservoir of new haemosporidian lineages.  相似文献   

12.
The impact of forest management on diurnal bird assemblages and abundance was investigated in contiguous tracts of eucalypt forest in the Brigalow Belt Bioregion, south central Queensland. Sites were located across three levels of livestock grazing intensity and three levels of selective logging intensity within the most extensive habitat type, Corymbia citriodora‐dominant forest. We recorded a high rate of incidence and large numbers of the hyper‐aggressive noisy miner Manorina melanocephala (Passeriformes: Meliphagidae) at the majority of our survey sites, a phenomenon rarely reported in non‐cleared landscapes. As shown by numerous studies in fragmented landscapes, the distribution of this species in our study had a substantial negative effect upon the distribution of small passerine species. Noisy miners exerted the strongest influence upon small passerine abundance, and masked any forest management effects. However, key habitat features important for small passerines were identified, including a relatively high density of large trees and stems in the midstorey. Selective logging appeared to exert a minimal effect upon noisy miner abundance, whereas grazing intensity had a profound, positive influence. Noisy miners were most abundant in intensively grazed forest with minimal midstorey and a low volume of coarse woody debris. Higher road density in the forest landscape also corresponded with increased numbers of noisy miners. Reduction in grazing pressure in Brigalow Belt forests has the potential to benefit small passerine assemblages across large areas through moderating noisy miner abundance. The strong relationship between noisy miners and small passerines suggests that noisy miner abundance could act as an easily measured indicator of forest condition, potentially contributing to monitoring of forest management outcomes.  相似文献   

13.
Because many pathogens can infect multiple host species within a community, disease dynamics in a focal host species can be affected by the composition of the host community. We examine the extent to which spatial variation in species’ abundances in an avian host community may contribute to geographically varying prevalence of a recently emerged wildlife pathogen. Mycoplasma gallisepticum is a pathogen novel to songbirds that has caused substantial mortality in house finches (Carpodacus mexicanus) in eastern North America. Though the house finch is the primary host species for M. gallisepticum, the American goldfinch (Spinus tristis) and northern cardinal (Cardinalis cardinalis) are alternate hosts, and laboratory experiments have demonstrated M. gallisepticum transmission between house finches and goldfinches. Still unknown is the real world impact on disease dynamics of variation in abundances of the three hosts. We analyzed data from winter-long bird and disease surveys in the northeastern United States. We found that higher disease prevalence in house finches was associated with higher numbers of northern cardinals and American goldfinches, although only the effect of cardinal abundance was statistically significant. Nevertheless, our results indicate that spatial variation in bird communities has the potential to cause geographic variation in disease prevalence in house finches.  相似文献   

14.
Top–down impacts of avian predators are often overlooked in marine environments despite evidence from other systems that birds significantly impact animal distribution and behavior; instead, birds are typically recognized for the impacts of their nutrient rich guano. This is especially true in shallow seagrass meadows where restoration methods utilize bird perches or stakes to attract birds as a passive fertilizer delivery system that promotes the regrowth of damaged seagrasses. However, this method also increases the local density of avian piscivores that may have multiple unexplored non‐consumptive effects on fish behavior and indirect impacts to seagrass communities. We utilized laboratory and field experiments to investigate whether visual cues of avian predators impacted the behavior of the dominant demersal fish in seagrass habitats, the pinfish Lagodon rhomboides, and promoted cascading interactions on seagrass‐associated fauna and epiphytes. In laboratory mesocosms, pinfish displayed species specific responses to models of avian predators, with herons inducing the greatest avoidance behaviors. Avoidance patterns were confirmed in field seagrass meadows where heron models significantly reduced the number of fish caught in traps. In a long term field experiment, we investigated whether avian predators caused indirect non‐consumptive effects on seagrass communities by monitoring fish abundances, invertebrate epiphyte grazers, and the seagrass epiphytes in response to heron models, bird exclusions, and bird stakes. On average, more fish were recovered under bird exclusions and fewer fish under heron models. However, we found no evidence of cascading effects on invertebrate grazers or epiphytes. Bird stake treatments only displayed a simple nutrient effect where higher bird abundances resulted in higher epiphyte biomass. Our results indicate that although birds and their visual cues can affect fish and epiphyte abundance through non‐consumptive effects and nutrient enrichment, these impacts do not propagate beyond one trophic level, most likely because of dampening by omnivory and larger scale processes.  相似文献   

15.
Many of the world’s large river systems have been greatly altered in the past century due to river regulation, agriculture, and invasion of introduced Tamarix spp. (saltcedar, tamarisk). These riverine ecosystems are known to provide important habitat for avian communities, but information on responses of birds to differing levels of Tamarix is not known. Past research on birds along the Colorado River has shown that avian abundance in general is greater in native than in non‐native habitat. In this article, we address habitat restoration on the lower Colorado River by comparing abundance and diversity of avian communities at a matrix of different amounts of native and non‐native habitats at National Wildlife Refuges in Arizona. Two major patterns emerged from this study: (1) Not all bird species responded to Tamarix in a similar fashion, and for many bird species, abundance was highest at intermediate Tamarix levels (40–60%), suggesting a response threshold. (2) In Tamarix‐dominated habitats, the greatest increase in bird abundance occurred when small amounts of native vegetation were present as a component of that habitat. In fact, Tamarix was the best vegetation predictor of avian abundance when compared to vegetation density and canopy cover. Our results suggest that to positively benefit avian abundance and diversity, one cost‐effective way to rehabilitate larger monoculture Tamarix stands would be to add relatively low levels of native vegetation (~20–40%) within homogenous Tamarix habitat. In addition, this could be much more cost effective and feasible than attempting to replace all Tamarix with native vegetation.  相似文献   

16.
The following evidence suggests that birds and lizards competefor their arthropod prey on islands in Lake Gatun, Panama: (1)there is extensive overlap between the diets of a representativebird and lizard, (2) at least one insectivorous lizard, Anolislimifrons, appears to be food-limited, (3) birds appear to havea major impact on arthropod abundances, (4) avian abundanceis negatively correlated with the physiological condition and,thus, with the fecundity of female A. limifrons, (5) bird andlizard population densities are negatively correlated. LakeGatun was formed in 1914. In the intervening years, a greatmany bird species have been lost from the smaller islands, butvery few lizard populations have gone extinct. Ninety-six percentof the between-site variation in avian abundances is accountedfor by the number of bird species present at a site. Sites withdepauperate avifaunas are characterized by low avian abundancesbecause the species present do not experience ecological release,and resources which are utilized by birds on species-rich sitesare not exploited by birds on species-poor sites. Thus, avianabundances are controlled by factors extrinsic to the bird-lizardinteraction, and lizards opportunistically increase their abundancesat sites with low avian abundances.  相似文献   

17.
The present study deals with the species abundance, diversity and species richness of avian communities in the Bangalore University Campus (BUC), Bengaluru, India. One hundred and six species of birds belonging to 42 families under 68 genera were recorded. Shannon–Wiener’s and Fisher’s alpha diversities, species evenness, species richness of bird communities, number of bird species and percentage of population density of birds between various seasons in the BUC differed significantly between the study years. Of these bird species, the relative abundance (6.96 %) and species distribution ratio (0.070) of Psittacula krameri were highest, whereas relative abundance (0.04 %) and species distribution ratio (0.002) of Coracias benghalensis were lowest. The existing 32 species of flowering plants/trees belonging to 29 genera under 14 families in the campus are used for perching by birds. Moreover 29 species of flowering plants/trees belonging to 24 genera under 16 families depend on birds for pollination and/or seed dispersal. Occurrence of greater bird diversity and abundance of avian communities were recorded highest in the winter season in the BUC premises. In the different seasons, the BUC had varying community structure of birds between the study years. BUC suffers from numerous threats namely grass cutting, fire and grazing of domestic animals. Conservation methods needed for habitat management are restoration of vegetation and wetlands, and increase plant and tree diversity to protect the ecosystem of BUC habitat and to preserve its diversity of avifauna.  相似文献   

18.
Bell miners (Manorina melanophrys; Meliphagidae) are a highly social and very aggressive honeyeater. They are despotic and cooperate in the defence of their territories against other bird species, leading to the almost complete exclusion of other avifauna from miner‐occupied regions. This study aimed to resolve some of the fine‐scale effects of bell miner aggression on avian diversity both within and adjacent to colonies to determine the true impact of a colony on local avifaunal abundance. Three areas, distributed throughout the range of the bell miner, were surveyed across both non‐breeding and breeding seasons to assess the temporal and spatial impacts of bell miner aggression on other bird species. Bell miner colonies were found to occupy very clearly defined areas and had the expected negative impact on avian diversity within their colony. The effects of bell miner colony presence on abundance and richness of avian species were found to cease at the colony boundary, with both recovering to normal levels immediately outside the bell miner colony. Whether bell miners were breeding or not, and irrespective of the amount of vegetation coverage, bell miner colonies were found to have relatively marginal impacts on avian richness and abundance. No impact of colony presence/absence was found on the richness or abundance of the avian species that dwell in the undergrowth, with some evidence that these species were actually more common at the colony edge. Our results demonstrate that the influence of bell miner colony presence upon avian biodiversity is restricted to the confines of the colony and does not radiate outwards into the surrounding habitat. Colony presence influences, therefore, have implications when considering the impact of bell miner behaviour on the diversity of insectivorous birds and processes, most notably the propagation of Bell Miner Associated Dieback.  相似文献   

19.
Aim We examined the relative influence of geographical location, habitat structure (physiognomy), and dominant plant species composition (floristics) on avian habitat relationships over a large spatial extent. Although it has been predicted that avian distributions are more likely to covary with physiognomy than with floristics at coarse scales, we sought to determine, more specifically, whether there remained a significant association between gradients in assemblages of bird species and dominant plant species within a general biome type, after statistically controlling for structural variation and geographical location of sampling sites. Location Our sample consisted of a subset of North American Breeding Bird Census survey sites that covered most of the range of eastern forests, from Florida to Nova Scotia, and west to Minnesota and North Dakota (up to c. 2500 km between sites). Methods We restricted our analyses to the single year (1981) that provided the largest sample of sites (47) for which vegetation data were available within ± 2 years of the avian surveys. We examined the relationship between avian community composition and tree species composition over this series of forested plots. Data were divided into four sets: (1) bird species abundances, (2) tree species abundances, (3) physiognomic or structural variables and (4) geographical location (latitude and longitude). We performed separate detrended correspondence analysis ordinations of birds and trees, before and after statistically partialling out covariation associated with structural variables and geographical location. To gauge the relationship between the two sets of species we correlated site scores resulting from separate ordinations. We also compared continental‐scale patterns of variation in bird and tree assemblages to understand possible mechanisms controlling species distribution at that scale. Results Both bird and tree communities yielded strong gradients, with first‐axis eigenvalues from 0.75 to 0.97. All gradients were relatively long (> 4.0), implying complete turnover in species composition. However, geographical location accounted for < 10% of the total variation associated with any ordination. Prior to partialling out covariation resulting from location and physiognomy, bird species ordinations were strongly correlated with tree species ordinations. The strength of association was reduced after partialling, but one bird and one tree axis remained significantly correlated. There was a significant species–area effect for birds, but not for trees. Main conclusions There was a significant relationship between bird species assemblages and tree species assemblages in the eastern forests of North America. Even after partialling out covariation associated with spatial location and forest physiognomy, there remained a significant correlation between major axes from bird and tree ordinations, consistent with the hypothesis that floristic variation is likely to be important in organizing assemblages of birds within a general biome type, albeit over a much larger spatial extent than originally predicted. Forest tree species ordinations differed from bird species ordinations in several ways: trees had a higher rate of turnover along underlying environmental gradients; trees appeared more patchily distributed than birds at this scale; and tree species were more spaced out along the underlying ecological gradients, with less overlap. By understanding the relationship between bird assemblages and forest floristics, we might better understand how avian communities are likely to change if tree species distributions are altered as a result of climatic changes.  相似文献   

20.
Understanding the roles of ecological drivers in shaping biodiversity is fundamental for conservation practice. In this study, we explored the effects of elevation, conservation status, primary productivity, habitat diversity and anthropogenic disturbance (represented by human population density and birding history) on taxonomic, phylogenetic and functional avian diversity in a subtropical landscape in southeastern China. We conducted bird surveys using 1‐km transects across a total of 30 sites, of which 10 sites were located within a natural reserve. Metrics of functional diversity were calculated based on six functional traits (body mass, clutch size, dispersal ratio, sociality, diet and foraging stratum). We built simultaneous autoregression models to assess the association between the ecological factors and diversity of the local avian communities. Local avian diversity generally increased with increasing habitat diversity, human population density and primary productivity. We also detected phylogenetic and functional clustering in these communities, suggesting that the avian assemblages were structured mainly by environmental filtering, rather than interspecific competition. Compared with sites outside the natural reserve, sites within the natural reserve had relatively lower avian diversity but a higher level of phylogenetic heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号