共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantitative trait loci of stripe rust resistance in wheat 总被引:1,自引:0,他引:1
G. M. Rosewarne S. A. Herrera-Foessel R. P. Singh J. Huerta-Espino C. X. Lan Z. H. He 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2013,126(10):2427-2449
Key message
Over 140 QTLs for resistance to stripe rust in wheat have been published and through mapping flanking markers on consensus maps, 49 chromosomal regions are identified.Abstract
Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations. 相似文献2.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance. 相似文献
3.
QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1 总被引:1,自引:0,他引:1
Caixia Lan Garry M. Rosewarne Ravi P. Singh Sybil A. Herrera-Foessel Julio Huerta-Espino Bhoja R. Basnet Yelun Zhang Ennian Yang 《Molecular breeding : new strategies in plant improvement》2014,34(3):789-803
Growing resistant wheat varieties is a key method of controlling two important wheat diseases, leaf rust and stripe rust. We analyzed quantitative trait loci (QTL) to investigate adult plant resistance (APR) to these rusts, using 141 F5 RILs derived from the cross ‘Avocet-YrA/Francolin#1’. Phenotyping of leaf rust resistance was conducted during two seasons at Ciudad Obregon, Mexico, whereas stripe rust was evaluated for two seasons in Toluca, Mexico, and one season in Chengdu, China. The genetic map was constructed with 581 markers, including diversity arrays technology and simple sequence repeat. Significant loci for reducing leaf rust severity were designated QLr.cim-1BL, QLr.cim-3BS.1, QLr.cim-3DC, and QLr.cim-7DS. The six QTL that reduced stripe rust severity were designated QYr.cim-1BL, QYr.cim-2BS, QYr.cim-2DS, QYr.cim-3BS.2, QYr.cim-5AL, and QYr.cim-6AL. All loci were conferred by Francolin#1, with the exception of QYr.cim-2DS, QYr.cim-5AL, and QYr.cim-6AL, which were derived from Avocet-YrA. Closely linked markers indicated that the 1BL locus was the pleiotropic APR gene Lr46/Yr29. QYr.cim-2BS was a seedling resistance gene designated as YrF that conferred intermediate seedling reactions and moderate resistance at the adult plant stage in both Mexican and Chinese environments. Significant additive interactions were detected between the six QTL for stripe rust, but not between the four QTL for leaf rust. Furthermore, we detected two new APR loci for leaf rust in common wheat: QLr.cim-3BS.1 and QLr.cim-7DS. 相似文献
4.
Rosewarne GM Singh RP Huerta-Espino J Rebetzke GJ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(7):1027-1034
Rust diseases are a major cause of yield loss in wheat worldwide, and are often controlled through the incorporation of resistance
genes using conventional phenotypic selection methods. Slow-rusting resistance genes are expressed quantitatively and are
typically small in genetic effect thereby requiring multiple genes to provide adequate protection against pathogens. These
effects are valuable and are generally considered to confer durable resistance. Therefore an understanding of the chromosomal
locations of such genes and their biological effects are important in order to ensure they are suitably deployed in elite
germplasm. Attila is an important wheat grown throughout the world and is used as a slow-rusting donor in international spring
wheat breeding programs. This study identified chromosomal regions associated with leaf rust and stripe rust resistances in
a cross between Attila and a susceptible parent, Avocet-S, evaluated over 3 years in the field. Genotypic variation for both
rusts was large and repeatable with line-mean heritabilities of 94% for leaf rust resistance and 87% for stripe rust. Three
loci, including Lr46/Yr29 on chromosome 1BL, were shown to provide resistance to leaf rust whereas six loci with small effects conferred stripe rust
resistance, with a seventh locus having an effect only by epistasis. Disease scoring over three different years enabled inferences
to be made relating to stripe rust pathogen strains that predominated in different years. 相似文献
5.
M. Kathryn Turner James A. Kolmer Michael O. Pumphrey Peter Bulli Shiaoman Chao James A. Anderson 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(2):345-361
Key message
We identified 15 potentially novel loci in addition to previously characterized leaf rust resistance genes from 1032 spring wheat accessions. Targeted AM subset panels were instrumental in revealing interesting loci.Abstract
Leaf rust is a common disease of wheat, consistently reducing yields in many wheat-growing regions of the world. Although fungicides are commonly applied to wheat in the United States (US), genetic resistance can provide less expensive, yet effective control of the disease. Our objectives were to map leaf rust resistance genes in a large core collection of spring wheat accessions selected from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection (NSGC), determine whether previously characterized race-nonspecific resistance genes could be identified with our panel, and evaluate the use of targeted panels to identify seedling and adult plant resistance (APR) genes. Association mapping (AM) detected five potentially novel leaf rust resistance loci on chromosomes 2BL, 4AS, and 5DL at the seedling stage, and 2DL and 7AS that conditioned both seedling and adult plant resistance. In addition, ten potentially novel race-nonspecific resistance loci conditioned field resistance and lacked seedling resistance. Analyses of targeted subsets of the accessions identified additional loci not associated with resistance in the complete core panel. Using molecular markers, we also confirmed the presence and effectiveness of the race-nonspecific genes Lr34, Lr46, and Lr67 in our panel. Although most of the accessions in this study were susceptible to leaf rust in field and seedling tests, many resistance loci were identified with AM. Through the use of targeted subset panels, more loci were identified than in the larger core panels alone.6.
P. Cheng X. M. Chen 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2010,121(1):195-204
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars. One such cultivar resistant to most races in North America is ‘IDO377s’. To study the genetics of its resistance this spring wheat cultivar was crossed with ‘Avocet Susceptible’ (AvS). Seedlings of the parents, F2 plants, and F3 lines were tested under controlled greenhouse conditions with races PST-43 and PST-45 of P. striiformis f. sp. tritici. IDO377s carries a single dominant gene for resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of ten markers were identified, two of which flanked the locus at 4.4 and 5.5 cM. These flanking RGAP markers were located on chromosome 2B with nulli-tetrasomic lines of ‘Chinese Spring’. Their presence in the ditelosomic 2BL line localized them to the long arm. The chromosomal location of the resistance gene was further confirmed with two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location, reactions to various races of the pathogen and tests of allelism, the IDO377s gene is different from all previously designated genes for stripe rust resistance, and is therefore designated Yr43. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their parentage were assayed to assess the status of the closest flanking markers and to select lines carrying Yr43. The results showed that the flanking markers were reliable for assisting selection of breeding lines carrying the resistance gene. A linked stripe rust resistance gene, previously identified as YrZak, in cultivar Zak was designated Yr44. 相似文献
7.
8.
Peace Kankwatsa Davinder Singh Peter C. Thomson Ebrahiem M. Babiker John M. Bonman Maria Newcomb Robert F. Park 《Molecular breeding : new strategies in plant improvement》2017,37(9):113
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the resistance gene pool available for germplasm improvement, a panel of 159 landraces plus old cultivars was evaluated for seedling and adult plant resistance (APR) to over 35 Australian pathotypes of Puccinia triticina, Puccinia graminis f. sp. tritici, and Puccinia striiformis f. sp. tritici. Known seedling resistance (SR) genes for leaf rust (Lr2a, Lr3a, Lr13, Lr23, Lr16, and Lr20), stem rust (Sr12, Sr13, Sr23, Sr30, and Sr36), and stripe rust (Yr3, Yr4, Yr5, Yr9, Yr10, Yr17, and Yr27) were postulated. The APR genes identified via field assessments and marker analyses included the pleiotropic genes (Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, and Sr2/Lr27/Yr30), Lr68, Lr74, and uncharacterized APR. A genome-wide association analysis using linear mixed models detected 79 single nucleotide polymorphism (SNP) markers significantly associated with rust resistance, which were mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D. SNPs associated with multiple rust resistances probably indicate the presence of new pleiotropic or closely linked genes. SNPs were mapped on chromosome positions (1AL, 1DS, 2AL, 4AS, 5BS, 6DL, and 7AL) that have not been known to carry APR genes. This study revealed the presence of a range of possibly unidentified effective seedling and APRs among the landraces, which might represent new sources of rust resistance for the ongoing effort to develop improved wheat cultivars. 相似文献
9.
Homoeologous set of NBS-LRR genes located at leaf and stripe rust resistance loci on short arms of chromosome 1 of wheat 总被引:2,自引:0,他引:2
Homoeologous group 1 chromosomes of wheat contain important genes that confer resistance to leaf, stem and stripe rusts,
powdery mildew and Russian wheat aphid. A disease resistance gene analog encoding nucleotide binding site-leucine rich repeat
(NBS-LRR), designated RgaYr10, was previously identified at the stripe rust resistant locus, Yr10, located on chromosome 1BS distal to the storage protein, Gli-B1 locus. RgaYr10 identified gene members in the homoeologous region of chromosome 1DS cosegregating with the leaf rust resistance
gene, Lr21, which originally was transferred from a diploid D genome progenitor. Four RgaYr10 gene members were isolated from chromosome
1DS and compared to two gene members previously isolated from the chromosome 1BS homeologue. NBS-LRR genes tightly linked
to stripe rust resistance gene Yr10 on chromosome 1BS were closely related in sequence and structure to NBS-LRR genes tightly linked to leaf rust resistance
gene Lr21 located within the homoeologous region on chromosome 1DS. The level of sequence homology was similar between NBS-LRR genes
that were isolated from different genomes as compared to genes from the same genome.
Electronic Publication 相似文献
10.
A. Singh R. E. Knox R. M. DePauw A. K. Singh R. D. Cuthbert H. L. Campbell S. Shorter S. Bhavani 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2014,127(11):2465-2477
Key message
In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.Abstract
Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance. 相似文献11.
Farshad Bakhtiar Farzad Afshari Goodarz Najafian 《Archives Of Phytopathology And Plant Protection》2013,46(14):1675-1685
Stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) may decrease wheat yield significantly in severe outbreaks. The most cost-effective and environmentally friendly approach to reduce yield losses due to rust diseases is deployment of effective resistant genes in wheat cultivars. The causal agents evolve and may break existing resistant sources as well. Therefore, long-term conventional breeding strategies and the ongoing evolution of pathogen populations in the region would put the success of breeding programmes at risk so that there is always a need for speeding up the process of germplasm enhancement through production of doubled-haploid breeding materials. In this study, we aimed at introgression of stripe rust resistance trait from three genotypes (Flanders, Martonvasar-17 (MV17) and Bersee) into a widely adapted cultivar “Ghods”. Positively selected F2BC2 progenies of three backcrossing schemas, i.e. (i) Flanders/3*Ghods; (ii) Ghods*3/MV17; and (iii) Hybride-de-bersee/3*Ghods, were used to produce three small-size doubled-haploid populations via wheat × Maize pollination methodology. The doubled-haploid populations were examined against two predominantly isolates of P. striiformis f. sp. tritici (Pst) i.e. 6E134A+ and 6E2A+Yr27+ and the screening revealed that 44 and 52 of the progenies are resistant to the above-mentioned isolates, respectively. Field data have shown that the stripe rust resistance doubled-haploid germplasm are comparable to local check cultivars in yield and earliness. 相似文献
12.
Urmil K. Bansal Alvina G. Kazi Baljit Singh Ray A. Hare Harbans S. Bariana 《Molecular breeding : new strategies in plant improvement》2014,33(1):51-59
Wollaroi, an Australian durum wheat cultivar, produced a low stripe rust response and the alternative parent Bansi was highly susceptible. The Wollaroi/Bansi recombinant inbred line (RIL) population was phenotyped across three consecutive crop seasons. A genetic map of the Wollaroi/Bansi RIL population comprising 799 markers (diversity arrays technology and simple sequence repeat markers) was used to determine the genomic location of stripe rust resistance genes carried by the cultivar Wollaroi. Composite interval mapping detected three consistent quantitative trait loci (QTL) in chromosomes 2A, 3B and 5B. These QTL were named QYr.sun-2A, QYr.sun-3B and QYr.sun-5B. Another QTL, QYr.sun-1B, was detected only in the 2009 crop season. QTL in chromosomes 1B, 2A, 3B and 5B explained on average 6, 9.3, 26.7 and 8.7 %, respectively, of the variation in stripe rust response. All QTL were contributed by Wollaroi. RILs carrying these QTL singly produced intermediate stripe rust severities ranging from 46.2 to 55.7 %, whereas RILs with all four QTL produced the lowest disease severity (34.3 %). The consistently low stripe rust response of Wollaroi for 20 years demonstrated the durability of the resistance loci involved. The QTL combination detected in this study is being transferred to common wheat. 相似文献
13.
Jun Zou Kassa Semagn Hua Chen Muhammad Iqbal Mohammad Asif Amidou N’Diaye Alireza Navabi Enid Perez-Lara Curtis Pozniak Rong-Cai Yang Robert J. Graf Harpinder Randhawa Dean Spaner 《Molecular breeding : new strategies in plant improvement》2017,37(12):144
Spring wheat (Triticum aestivum L.) breeding goals in western Canada include good agronomic characteristics and good end-use quality, and also moderate to elevated resistance to diseases of economic importance. In this study, we aimed to identify quantitative trait loci (QTL) associated with resistance to common bunt (Tilletia tritici and Tilletia laevis), tan spot (Pyrenophora tritici-repentis), leaf rust (Puccinia triticina), and stripe rust (Puccinia striiformis f. sp. tritici). A total of 167 recombinant inbred lines (RILs) derived from a cross between two spring wheat cultivars, ‘Attila’ and ‘CDC Go’, were evaluated for reactions to the four diseases in nurseries from three to eight environments, and genotyped with the Wheat 90K SNP array and three gene-specific markers (Ppd-D1, Vrn-A1, and Rht-B1). The RILs exhibited transgressive segregation for all four diseases, and we observed several lines either superior or inferior to the parents. Broad-sense heritability varied from 0.25 for leaf rust to 0.48 for common bunt. Using a subset of 1203 informative markers (1200 SNPs and 3 gene-specific markers) and average disease scores across all environments, we identified two QTLs (QCbt.dms-1B.2 and QCbt.dms-3A) for common bunt, and three QTLs each for tan spot (QTs.dms-2B, QTs.dms-2D, and QTs.dms-6B), leaf rust (QLr.dms-2D.1, QLr.dms-2D.2, and QLr.dms-3A), and stripe rust (QYr.dms-3A, QYr.dms-4A, and QYr.dms-5B). Each QTL individually explained between 5.9 and 18.7% of the phenotypic variation, and altogether explained from 21.5 to 26.5% of phenotypic and from 52.2 to 86.0% of the genetic variation. The resistance alleles for all QTLs except one for stripe rust (QYr.dms-5B) were from CDC Go. Some of the QTLs are novel, while others mapped close to QTLs and/or genes reported in other studies. 相似文献
14.
Enid Perez-Lara Kassa Semagn Hua Chen Van Anh Tran Izabela Ciechanowska Muhammad Iqbal Amidou N’Diaye Curtis Pozniak Stephen E. Strelkov Pierre J. Hucl Robert J. Graf Harpinder Randhawa D. Spaner 《Molecular breeding : new strategies in plant improvement》2017,37(3):23
Recently, we mapped genomic regions associated with resistance to wheat diseases and insensitivity to Pyrenophora tritici-repentis (Ptr) toxins using 81 historical and modern Canadian western spring wheat cultivars genotyped with genome-wide single nucleotide polymorphic (SNP) markers. Here, we investigate the frequency and effects of allelic variants of 50 markers associated with 16 candidate genes that regulate resistance to leaf rust (Puccinia triticina), yellow or stripe rust (P. striiformis f. sp. tritici), tan spot (P. tritici-repentis), and Ptr ToxA reaction in a subset of 70 of the 81 spring wheat cultivars. We evaluated the 70 cultivars in the field for all diseases except Ptr ToxA, which was evaluated in a greenhouse. Using Spearman rank correlation, stepwise discriminant analysis, and partial least squares regression, we identified between 4 and 11 markers as best predictors of each phenotypic trait. Overall, 23 of the 50 markers were associated with one or more of the phenotypic traits of which analysis of variance showed significant differences between allelic variants of 19 markers. In most analyses, markers for Lr34/Yr18 and Tsn1 loci were identified consistently as the best predictor of disease resistance and Ptr ToxA sensitivity, respectively. The same alleles from two Lr34/Yr18 diagnostic SNP markers (wMAS000003 and wMAS000004) not only decreased stripe rust scores up to 1.6 (on a 1 to 9 scale), but also increased grain yield up to 196 kg ha?1 without affecting maturity. Results from this study could aid spring wheat breeders in selecting the best parental combinations and/or marker-assisted selection to integrate disease resistance with early maturity and short stature. 相似文献
15.
Firdissa E. Bokore Richard D. Cuthbert Ron E. Knox Harpinder S. Randhawa Colin W. Hiebert Ron M. DePauw Asheesh K. Singh Arti Singh Andrew G. Sharpe Amidou N’Diaye Curtis J. Pozniak Curt McCartney Yuefeng Ruan Samia Berraies Brad Meyer Catherine Munro Andy Hay Karim Ammar Julio Huerta-Espino Sridhar Bhavani 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(12):2617-2635
Key message
Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding.Abstract
Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.16.
Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527 总被引:1,自引:0,他引:1
Ren RS Wang MN Chen XM Zhang ZJ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,125(5):847-857
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3?cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30?%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82?% of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5?±?6.75?cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust. 相似文献
17.
Hongchang Zhang Chenfang Wang Yulin Cheng Xianming Chen Qingmei Han Lili Huang Guorong Wei Zhensheng Kang 《Plant cell reports》2012,31(12):2121-2137
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host–pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. Key message The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species. 相似文献
18.
A. Singh M. P. Pandey A. K. Singh R. E. Knox K. Ammar J. M. Clarke F. R. Clarke R. P. Singh C. J. Pozniak R. M. DePauw B. D. McCallum R. D. Cuthbert H. S. Randhawa T. G. Fetch Jr. 《Molecular breeding : new strategies in plant improvement》2013,31(2):405-418
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding. 相似文献
19.
Lin F Chen XM 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,114(7):1277-1287
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control
of the disease. The spring wheat cultivar ‘Alpowa’ has both race-specific, all-stage resistance and non-race-specific, high-temperature
adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with
‘Avocet Susceptible’ (AVS). Seedlings of the parents, and F1, F2 and F3 progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques
were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F3 lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance,
the parents and 136 F3 lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions.
A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal
location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for
adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1%
of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R
2 values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance. 相似文献
20.
Long-Xi Yu Sixin Liu James A. Anderson Ravi P. Singh Yue Jin Jorge Dubcovsky Gina Brown-Guidera Sridhar Bhavani Alexey Morgounov Zhonghu He Julio Huerta-Espino Mark E. Sorrells 《Molecular breeding : new strategies in plant improvement》2010,26(4):667-680
Stem rust is one of the most destructive diseases of wheat worldwide. The recent emergence of wheat stem rust race Ug99 (TTKS based on the North American stem rust race nomenclature system) and related strains threaten global wheat production because they overcome widely used genes that had been effective for many years. Host resistance is likely to be more durable when several stem rust resistance genes are pyramided in a single wheat variety; however, little is known about the resistance genotypes of widely used wheat germplasm. In this study, a diverse collection of wheat germplasm was haplotyped for stem rust resistance genes Sr2, Sr22, Sr24, Sr25, Sr26, Sr36, Sr40, and 1A.1R using linked microsatellite or simple sequence repeat (SSR) and sequence tagged site (STS) markers. Haplotype analysis indicated that 83 out of 115 current wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) likely carry Sr2. Among those, five out of 94 CIMMYT spring lines tested had both Sr2 and Sr25 haplotypes. Five out of 22 Agriculture Research Service (ARS) lines likely have Sr2 and a few have Sr24, Sr36, and 1A.1R. Two out of 43 Chinese accessions have Sr2. No line was found to have the Sr26 and Sr40 haplotypes in this panel of accessions. DArT genotyping was used to identify new markers associated with the major stem resistance genes. Four DArT markers were significantly associated with Sr2 and one with Sr25. Principal component analysis grouped wheat lines from similar origins. Almost all CIMMYT spring wheats were clustered together as a large group and separated from the winter wheats. The results provide useful information for stem rust resistance breeding and pyramiding. 相似文献