首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggression is often positively correlated with other behavioural traits such as boldness and activity levels. Comparisons across populations can help to determine factors that promote the evolution of such traits. We quantified these behaviours by testing the responses of wild-caught poeciliid fish, Brachyrhaphis episcopi, to mirror image stimuli. This species occurs in populations that experience either high or low levels of predation pressure. Previous studies have shown that B. episcopi from low predation environments are less bold than those that occur with many predators. We therefore predicted that fish from high predation populations would be more aggressive and more active than fish from low predation populations. However, we found the opposite - low predation fish approached a mirror and a novel object more frequently than high predation fish suggesting that ‘boldness’ and aggression were higher in low predation populations, and that population-level boldness measures may vary depending on context. When tested individually, low predation fish inspected their mirror image more frequently. Females, but not males, from low predation sites were also more aggressive towards their mirror image. Variation in female aggression may be driven by a trade-off between food availability and predation risk. This suggests that the relationship between aggression and boldness has been shaped by adaptation to environmental conditions, and not genetic constraints.  相似文献   

2.

Background

Grouping behaviour, common across the animal kingdom, is known to reduce an individual''s risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group.

Methodology and Principal Findings

We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity.

Conclusions and Significance

Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions.  相似文献   

3.
Predation risk has strong effects on organismal physiology that can cascade to impact ecosystem structure and function. Physiological processes in general are sensitive to temperature. Thus, the temperature at which predators and prey interact may shape physiological response to predation risk. We measured and evaluated how temperature and predation risk affected growth rates of predaceous damselfly nymphs (Enallagma vesperum, Odonata: Coenagrionidae). First, we conducted growth trials at five temperatures crossed with two levels of predation risk (fish predator present versus absent) and measured growth rates, consumption rates, assimilation efficiencies, and production efficiencies of 107 individual damselflies. Second, we used a model to evaluate if and how component physiological responses to predation risk affected growth rates across temperatures. In the absence of mortality threat, growth rates of damselflies increased with warming until about 23.5 °C and then began to decline, a typical unimodal response to changes in temperature. Under predation risk, growth rates were lower and the shape of the thermal response was less apparent. Higher metabolic and survival costs induced by predation risk were only partially offset by changes in consumption rates and assimilation efficiencies and the magnitude of non-consumptive effects varied as a function of temperature. Furthermore, we documented that thermal physiology was mediated by predation risk, a known driver of organismal physiology that occurs in the context of species interactions. A general understanding of climatic impacts on ectothermic populations requires consideration of the community context of thermal physiology, including non-consumptive effects of predators.  相似文献   

4.
Nonlethal effects of predators on prey behaviour are still poorly understood, although they may have cascading effects through food webs. Underwater observations and experiments were conducted on a shallow fringing coral reef in Malaysia to examine whether predation risks affect diel activity, habitat use, and survival of the rhynchocinetid shrimp Cinetorhynchus hendersoni. The study site was within a protected area where predatory fish were abundant. Visual surveys and tethering experiments were conducted in April–May 2010 to compare the abundance of shrimps and predatory fishes and the relative predation intensity on shrimps during day and night. Shrimps were not seen during the day but came out of refuges at night, when the risk of being eaten was reduced. Shrimp preferences for substrata of different complexities and types were examined at night when they could be seen on the reef; complex substrata were preferred, while simple substrata were avoided. Shrimps were abundant on high-complexity columnar–foliate Porites rus, but tended to make little use of branching Acropora spp. Subsequent tethering experiments, conducted during daytime in June 2013, compared the relative mortality of shrimps on simple (sand–rubble, massive Porites spp.) and complex (P. rus, branching Acropora spp.) substrata under different predation risk scenarios (i.e., different tether lengths and exposure durations). The mortality of shrimps with short tethers (high risk) was high on all substrata while, under low and intermediate predation risks (long tethers), shrimp mortality was reduced on complex corals relative to that on sand–rubble or massive Porites spp. Overall, mortality was lowest on P. rus. Our study indicates that predation risks constrain shrimp activity and habitat choice, forcing them to hide deep inside complex substrata during the day. Such behavioural responses to predation risks and their consequences for the trophic role of invertebrate mesoconsumers warrant further investigation, especially in areas where predatory fishes have been overexploited.  相似文献   

5.
Both constitutive and inducible antipredator strategies are ubiquitous in nature and serve to maximize fitness under a predation threat. Inducible strategies may be favored over constitutive defenses depending on their relative cost and benefit and temporal variability in predator presence. In African temporary ponds, annual killifish of the genus Nothobranchius are variably exposed to predators, depending on whether larger fish invade their habitat from nearby rivers during floods. Nonetheless, potential plastic responses to predation risk are poorly known. Here, we studied whether Nothobranchius furzeri individuals adjust their life history in response to a predation threat. For this, we monitored key life history traits in response to cues that signal the presence of predatory pumpkinseed sunfish (Lepomis gibbosus). While growth rate, adult body size, age at maturation, and initial fecundity were not affected, peak and total fecundity were higher in the predation risk treatment. This contrasts with known life history strategies of killifish from permanent waters, which tend to reduce reproduction in the presence of predators. Although our results show that N. furzeri individuals are able to detect predators and respond to their presence by modulating their reproductive output, these responses only become evident after a few clutches have been deposited. Overall our findings suggest that, in the presence of a predation risk, it can be beneficial to increase the production of life stages that can persist until the predation risk has faded.  相似文献   

6.
Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.  相似文献   

7.
Variable levels of predation pressure are known to have significantimpacts on the evolutionary ecology of different populationsand can affect life-history traits, behavior, and morphology.To date, no studies have directly investigated the impact ofpredation pressure on cognitive ability. Here we use a systemof replicate rivers, each with sites of high- and low-predationpressure, to investigate how this ecological variable affectslearning ability in a tropical poeciliid, Brachyraphis episcopi.We used a spatial task to assess the cognitive ability of eightpopulations from four independent streams (four high- and fourlow-predation populations). The fish were required to locatea foraging patch in one of four compartments by utilizing spatialcues. Fish from areas of low-predation pressure had shorterforaging latencies, entered fewer compartments before discoveringthe reward patch and navigated more actively within the maze,than fish from high-predation sites. The difference in performanceis discussed with reference to forage patch predictability,inter- and intraspecific foraging competition, geographic variationin predation pressure, boldness–shyness traits, and brainlateralization.  相似文献   

8.
Predator-prey interaction between sandy shore crab, Matuta lunaris (Forskål, 1775), and juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel), was investigated under controlled laboratory conditions. Possibility of training and conditioning hatchery-reared flounder to avoid predators was also examined. Crabs took over 75% of their daily ration at night when they were given access to prey 24 h a day. Large (64.8±5.4 g)- and medium (30.68±3.33 g)-sized crabs ate ca. 5.5±1.45 and 3.9±1.99 individuals of flounder (TL=4.96±0.23 cm) a day, respectively. When flounder juveniles that have experienced predation pressure by crabs encountered predators again, they exhibited better survival compared to the naive fish. Flounder juveniles were also conditioned either using small and, thus, benign predators, or large crabs over fence. The conditioned fish with either method were better able to avoid capture by crabs than naive fish, revealing that learning process should play an important role in their predator avoidance. Anti-predator performance was also compared between starved and fed flounder juveniles. Fed fish were rarely eaten by predators after 3 h of exposure, whereas starved fish continued to be eaten. Our results suggest that stock-enhancement program of Japanese flounder can be improved by applying proper feeding protocol and conditioning to avoid predators prior to release. Present research supports the idea that behavioural and ecological consideration for the target species is indispensable for the success of stock enhancement.  相似文献   

9.
Pleuronectid flatfish are generally thought to use stereotypical anti-predator behavior to reduce encounters with potential predators, including burial, maintaining a low profile on the bottom, cryptic coloration, and reduced activity. However, a series of laboratory experiments demonstrate significantly different predation rates on juvenile (Age-0) English sole (Parophrys vetulus), northern rock sole (Lepidopsetta polyxystra), and Pacific halibut (Hippoglossus stenolepis) by Age-2 Pacific halibut predators, suggesting differing anti-predator strategies and/or capabilities among species. In this study, behavioral attributes that control how conspicuous juvenile flatfish are to their predators, such as burial, body posture, and activity levels, were examined both in the presence and absence of perceived predation risk. English sole exhibited risk-prone behavior; they tended to bury less, exhibit an arched body posture (with head elevated off the bottom), and were more active in both the absence and presence of predators when compared to the other two species. Conversely, rock sole exhibited risk-averse behavior, being buried, inactive, with a flat body posture regardless of predation risk. Halibut demonstrated risk-sensitive behavior; behaving like English sole in the absence of predation risk, and shifted to behavior similar to that of rock sole in the face of predation risk. As an estuarine dependent species, English sole recruit to an environment that tends to be highly turbid reducing encounters with predators. As a result English sole, may have “relaxed” anti-predator behaviors in comparison to northern rock sole and Pacific halibut which recruit to less turbid coastal nurseries.  相似文献   

10.
Hoey AS  McCormick MI 《Oecologia》2004,139(1):23-29
Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fultons K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.  相似文献   

11.
Survival of enteric bacteria in aquatic habitats varies depending upon species, strain, and environmental pressures, but the mechanisms governing their fate are poorly understood. Although predation by protozoa is a known, top-down control mechanism on bacterial populations, its influence on the survival of fecal-derived pathogens has not been systematically studied. We hypothesized that motility, a variable trait among pathogens, can influence predation rates and bacterial survival. We compared the survival of two motile pathogens of fecal origin by culturing Escherichia coli O157 and Salmonella enterica Typhimurium. Each species had a motile and non-motile counterpart and was cultured in outdoor microcosms with protozoan predators (Tetrahymena pyriformis) present or absent. Motility had a significant, positive effect on S. enterica levels in water and sediment in the presence or absence of predators. In contrast, motility had a significant negative effect on E. coli O157 levels in sediment, but did not affect water column levels. The presence/absence of protozoa consistently accounted for a greater proportion of the variability in bacterial levels (>95 %) than in bacterial motility (<4 %) in the water column. In sediments, however, motility was more important than predation for both bacteria. Calculations of total CFU/microcosm showed decreasing bacterial concentrations over time under all conditions except for S. enterica in the absence of predation, which increased ~0.5–1.0 log over 5 days. These findings underscore the complexity of predicting the survival of enteric microorganisms in aquatic habitats, which has implications for the accuracy of risk assessment and modeling of water quality.  相似文献   

12.
The South American cichlid fish, Acarichthys heckelii, is one of many exotic species established in Singapore’s artificial freshwater habitat; forming the only recorded population outside its native distribution. The discovery of an A. heckelii individual in a sensitive natural waterway (Nee Soon Swamp Forest) prompted this study, which aimed to investigate the distribution, diet, growth and reproductive ecology of the fish, as well as its possible route of introduction. We found that A. heckelii is largely restricted to artificial freshwater bodies, although a sizable established population occurs in a modified waterway connected to Nee Soon Swamp Forest. Gut contents revealed that the fish fed mainly on benthic algae and macroinvertebrates, the latter occurring in higher frequencies in larger individuals. While unable to ascertain clear seasonality in its breeding, we observed a peak in reproductive investment coinciding with the Northeast monsoon, indicating possible life history adaptations. Genetic comparisons of the cytochrome b mitochondrial marker between individuals from South America, Singapore and the ornamental fish trade shows that the A. heckelii populations in Singapore’s fresh waters are more closely related to fishes in the ornamental fish trade than the native population in South America, corroborating anecdotal evidences identifying aquarists as the source of local releases. Our findings also demonstrate the viability of the ornamental trade as an avenue of species introduction and the potential invasiveness of A. heckelii.  相似文献   

13.
The identification and efficiency of arthropod predator and parasites related to natural control of cotton leafworm eggs,Alabama argillacea (Huebner), were studied in a cotton field, Jaboticabal, SP, Brazil. Plants were marked randomly and the eggs found on them were indicated by arrow tapes for predation and parasitism observations. To evaluate and identify the arthropod fauna in the row-meter containing the marked plant, visual countings and collections using D-Vac ® and “beat sheet” were used. The average predation rate during the season, in the presence of 23.0 predators per row-meter, was 50.6% and the parasitism byTrichogrammatoidea annulata was 44.9% totaling 95.5% of egg reduction. In decreasing order of abundance, the arthropod predators found were the antPheidole sp., the spiderChrysso clementinae Petrunkevitch, the hemipteraOrius insidiosus Say andCeratocapsus mariliensis Carvalho & Fontes, and the coccinellidHyperaspis festiva (Mulsant).  相似文献   

14.
The impact of juvenile spot (Leiostomus xanthurus Lacépède) predation/disturbance on meiofauna and the effectiveness of simulated worm tubes as refuges from predators were assessed in a series of laboratory experiments with intact natural estuarine sediments and three densities of worm tube mimics (0, 1.6, and 6.3 tubes/0.01 m2). There was no statistically significant predation on any meiofaunal taxa in the habitat containing no tube mimics. However, mortality was significant for three of six taxa in the “low complexity” habitat (1.6 tubes/0.01 m2) and three of six taxa in the “high complexity” habitat (6.3 tubes/0.01 m2) when fish were present. The evidence for predation in more complex habitats suggests structure promotes mortality for certain meiofaunal taxa. Such effects could result from
  • 1.(1) the interaction of predators and/or prey with the refuge element such that certain prey became more vulnerable
  • 2.(2) the ability of certain predators to forage more efficiently amidst structure.
  相似文献   

15.
During settlement, one of the main threats faced by individuals relates to their ability to detect and avoid predators. Information on predator identities can be gained either through direct experience or from the observation and/or interaction with others, a process known as social learning. In this form of predator recognition, less experienced individuals learn from experienced members within the social group, without having to directly interact with a predator. In this study, we examined the role of social learning in predator recognition in relation to the survival benefits for the damselfish, Pomacentrus wardi, during their settlement transition. Specifically, our experiments aimed to determine if P. wardi are capable of transmitting the recognition of the odour of a predator, Pseudochromis fuscus, to conspecifics. The experiment also examined whether there was a difference in the rate of survival between individuals that directly learnt the predator odour and those which acquired the information through social learning compared to naïve individuals. Results show that naïve P. wardi are able to learn a predator’s identity from experienced individuals via social learning. Furthermore, survival between individuals that directly learnt the predator’s identity and those that learnt through social learning did not significantly differ, with fish from both treatments surviving at least five times better than controls. These results demonstrate that experience may play a vital role in determining the outcome of predator–prey interactions, highlighting that social learning improves the ability of prey to avoid and/or escape predation at a life-history transition.  相似文献   

16.
M. Jennions  S. Telford 《Oecologia》2002,132(1):44-50
Variation among populations in extrinsic mortality schedules selects for different patterns of investment in key life-history traits. We compared life-history phenotypes among 12 populations of the live-bearing fish Brachyrhaphis episcopi. Five populations co-occurred with predatory fish large enough to prey upon adults, while the other seven populations lacked these predators. At sites with large predatory fish, both sexes reached maturity at a smaller size. Females of small to average length that co-occurred with predators had higher fecundity and greater reproductive allotment than those from populations that lacked predators, but the fecundity and reproductive allotment of females one standard deviation larger than mean body length did not differ among sites. In populations with large predatory fish, offspring mass was significantly reduced. In each population, fecundity, offspring size and reproductive allotment increased with female body size. When controlling for maternal size, offspring mass and number were significantly negatively correlated, indicating a phenotypic trade-off. This trade-off was non-linear, however, because reproductive allotment still increased with brood size after controlling for maternal size. Similar differences in life-history phenotypes among populations with and without large aquatic predators have been reported for Brachyrhaphis rhabdophora in Costa Rica and Poecilia reticulata (a guppy) in Trinidad. This may represent a convergent adaptation in life-history strategies attributable to predator-mediated effects or environmental correlates of predator presence.  相似文献   

17.
The mechanisms underlying successful biological invasions often remain unclear. In the case of the tropical water flea Daphnia lumholtzi, which invaded North America, it has been suggested that this species possesses a high thermal tolerance, which in the course of global climate change promotes its establishment and rapid spread. However, D. lumholtzi has an additional remarkable feature: it is the only water flea that forms rigid head spines in response to chemicals released in the presence of fishes. These morphologically (phenotypically) plastic traits serve as an inducible defence against these predators. Here, we show in controlled mesocosm experiments that the native North American species Daphnia pulicaria is competitively superior to D. lumholtzi in the absence of predators. However, in the presence of fish predation the invasive species formed its defences and became dominant. This observation of a predator-mediated switch in dominance suggests that the inducible defence against fish predation may represent a key adaptation for the invasion success of D. lumholtzi.  相似文献   

18.
Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey''s lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences.  相似文献   

19.
Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.  相似文献   

20.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号