首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

2.
Selenium is an essential chemopreventive antioxidant element to oxidative stress, although high concentrations of selenium induce toxic and oxidative effects on the human body. However, the mechanisms behind these effects remain elusive. We investigated toxic effects of different selenium concentrations in human promyelocytic leukemia HL-60 cells by evaluating Ca2+ mobilization, cell viability and caspase-3 and -9 activities at different sample times. We found the toxic concentration and toxic time of H2O2 as 100 μm and 10 h on cell viability in the cells using four different concentrations of H2O2 (1 μm–1 mm) and six different incubation times (30 min, 1, 2, 5, 10, 24 h). Then, we found the therapeutic concentration of selenium to be 200 nm by cells incubated in eight different concentrations of selenium (10 nm–1 mm) for 1 h. We measured Ca2+ release, cell viability and caspase-3 and -9 activities in cells incubated with high and low selenium concentrations at 30 min and 1, 2, 5, 10 and 24 h. Selenium (200 nm) elicited mild endoplasmic reticulum stress and mediated cell survival by modulating Ca2+ release, the caspases and cell apoptosis, whereas selenium concentrations as high as 1 mm induced severe endoplasmic reticulum stress and caused cell death by activating modulating Ca2+ release, the caspases and cell apoptosis. In conclusion, these results explained the molecular mechanisms of the chemoprotective effect of different concentrations of selenium on oxidative stress-induced apoptosis.  相似文献   

3.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

4.

Background and Aims

The effects of Sb(V), alone or combined with Se, on the growth and root development of plants are unknown. The aim of this study is to investigate the interaction between selenite and different forms of Sb and the effects on their uptake in rice and on rice root morphology.

Methods

A hydroponic experiment was conducted that contained fourteen treatments. The treatment levels for Se were 0.5 and 1 mg L?1, and the treatment levels for Sb(III) and Sb(V) were 5 and 15 mg L?1.

Results

Sb(V) alone significantly reduced the surface area, mean diameter and volume of the roots, whereas Sb(III) alone reduced the values of most parameters of root morphology. The addition of 1 mg L?1 Se significantly enhanced the surface area, number of medium roots, and Sb concentration in the roots subjected to 15 mg L?1 Sb(V), but it decreased the number of root forks, the number and proportion of fine roots, and the shoot Sb concentration under exposure to 15 mg L?1 Sb(III). When the plants were subjected to 1 mg L?1 Se, the addition of 15 mg L?1 Sb(III) markedly reduced the shoot and root Se concentrations and the number of root tips, root forks, and fine roots and increased the mean root diameter. However, the addition of Sb(V) did not significantly affect the root and shoot Se concentrations but significantly decreased the number of root forks and fine roots and increased the proportion of medium roots.

Conclusions

Se and Sb(III) showed antagonistic effects on uptake in the shoots, but not in the roots, of paddy rice. A range of Se concentrations could stimulate the uptake of Sb in both the shoots and roots of paddy rice exposed to Sb(V).
  相似文献   

5.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

6.
Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L?1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.  相似文献   

7.

Background and aims

Iron plaque on roots has been hypothesized to be an effective restraint on the uptake of arsenic (As) by rice plants. Evaluating the formation of iron plaque and its effect on As uptake by various rice cultivars is valuable because selecting low As uptake rice cultivars results in reduced risks associated with rice consumption. This study examines iron plaque formation and its effect on As uptake by different genotypes of rice cultivars.

Methods

Hydroponic cultures were conducted in phytotron at day 25/night 20°C and the rice seedlings in fifth-leaf age were treated with Fe (II) at the levels of 0 and 100 mg L?1 in the Kimura B nutrient solutions for 14 days. The amount of iron plaque formation of 28 rice cultivars was determined by using the DCB extractable Fe of roots. Four cultivars representing high and low iron plaque formation capability, from indica and japonica respectively, were selected out of the 28 cultivars and processed for Fe and As treatments. After Fe treatments for 4 days, the seedlings were fed with As (III) at levels of 0, 0.5, and 1 mg L?1 for another 10 days. We were thus able to determine the amounts of iron plaque formation and the As content in iron plaque, roots, and shoots of the four tested cultivars.

Results

Iron plaque formation capability differed among tested twenty-eight rice cultivars. Feeding As to four tested cultivars enhanced iron plaque formation on roots; the As uptake by roots and shoots was decreased by the addition of Fe. Both the retention of As on iron plaque and the decrease of As uptake by the addition of Fe varied among tested cultivars and were not correlated with the iron plaque formation capability.

Conclusions

Iron plaque can sequestrate As on the roots and reduce rice’s As uptake. However, other factors also influence the As uptake, namely the differences in binding affinity of iron plaque to As, the existent As species in the rhizosphere, and the uptake capability of various As species by rice plants. These factors should also be considered when selecting low As uptake rice cultivars.  相似文献   

8.
The effects of indole-3-butyric acid (IBA) alone and in combination with l-arginine on the morphogenic and biochemical responses in shoot tip explants of the cherry rootstock M × M 14 (Prunus avium × Prunus mahaleb) were examined. The maximum root number per rooted explant (16), root fresh (FW) and dry (DW) weights, as well as the rooting percentage (100 %) were recorded when 2 mg l?1 IBA (alone) were applied. Including the lowest IBA concentration (0.5 mg l?1) with the lowest and highest l-arginine concentrations (0.5 and 2 mg l?1, respectively) resulted in the greatest root length. The maximum leaf chlorophyll concentration and shoot length of the initial explant were recorded when 0.5 mg l?1 IBA plus 2 mg l?1 l-arginine were applied. In addition, l-arginine in combination with IBA (1 and 2 mg l?1) was found to suppress shoot FW and DW. On the other hand, l-arginine enhanced the promoting effect of IBA on both root length and leaf chlorophyll concentration. The carbohydrate and proline concentrations in leaves were not significantly altered with the application of IBA alone or in combination with l-arginine. On the other hand, the carbohydrate and proline concentrations in roots were decreased with the application of 1 and 2 mg l?1 IBA with l-arginine, resulting in the suppression of the promoting effects of IBA. It is clear from the findings that l-arginine has a direct effect on the in vitro rooting of M × M 14 explants, is involved in the function of the photosythetic apparatus, influences leaf chlorophyll content, participates in carbohydrate biosynthesis and metabolism, and is involved in proline accumulation both in leaves and roots.  相似文献   

9.

Aims

Along a gradient of diminishing heavy metal (HM) concentrations formed by local inclusions of uranium mine soils into non-contaminated cropland, duplicate 1-m2 plots of 3 winter wheat cvs. (Akteur E, Brilliant A, and Bussard E) were established at 3 positions within a winter rye (cv. Visello) culture. It was the goal to determine permissible soil HM concentrations tolerated by cereal cvs. with variable excluder properties, and regulatory mechanisms which optimize the concentrations of essential minerals and radionuclide analogues in viable seeds from geologically related soils with diverging HM content.

Methods

Total metal concentrations / nitrogen species in soils, shoots, and mature grains were determined by ICP-MS / spectrophotometry, and Kjeldahl analyses.

Results

No non-permissible concentrations in grains of the 4 cereal cvs. were caused by elevated but aged total soil resources (mg kg-1 DW) in As (156); Cu (283); Mn (2,130); Pb (150); and in Zn (3,005) in the case of Bussard although CdCuZn elicited phytotoxicity symptoms. Uranium (41) contaminated grains of Akteur and Brilliant but not of Bussard and Visello due to their excluder properties. The concentration in Cd (41) had to be reduced to 20/2 mg kg-1 for the production by excluder cvs. of fodder/food grains. Cultivars excluding both HM and radionuclide analogues such as BaCsSr synchronously were not identified. Whereas plant tissue concentrations in the metalloprotein-associated elements CdCoCuMnNiZn rise and fall generally with Norg, grains of the wheat cvs. differed too little in Norg to designate variations in their metal acquisition rates solely as protein-regulated. Wheat grains confined nevertheless the concentrations in Cu to 11–14 mg kg-1 although the respective soil concentrations varied by factor 19. Grain deposition in CaFeMn(Zn) and in nuclides followed the same rules.

Conclusions

It is hypothesized that cereals down-/up-regulate grain:soil transfer rates from soils with excessive/deficient trace metal resources to equip viable seeds with an optimum but not maximum in essential minerals. Positive correlations between metal concentrations in planta to those in soil can thereby be lost.  相似文献   

10.

Aims

With a high growth rate and biomass production, bamboos are frequently used for industrial applications and recently have proven to be useful for wastewater treatment. Bamboos are considered as Si accumulators and there is increasing evidence that silicon may alleviate abiotic stresses such as metal toxicity. The aim of this study was to investigate the extent of metal concentrations and possible correlations with Si concentrations in plants.

Methods

This study presents, for the first time, reference values for silicon (Si), copper (Cu) and zinc (Zn) concentrations in stems and leaves of various bamboo species grown under the natural pedo-climatic conditions of the island of Réunion (Indian Ocean).

Results

A broad range of silicon concentrations, from 0 (inferior to detection limit) to 183 mg g?1 dry matter (DM), were found in stems and leaves. Mean leaf Cu and Zn concentrations were low, i.e. 5.1 mg kg?1 DM and 15.7 mg kg?1 DM, respectively. Silicon, Cu and Zn concentrations increased over the following gradient: stem base?<?stem tip?<?leaves. Significant differences in Si, Cu and Zn contents (except Zn in the stem) were noted between bamboo species, particularly between monopodial and sympodial bamboo species, which differ in their rhizome morphology. Sympodial bamboos accumulated more Si and Cu than monopodial bamboos, in both stems and leaves, whereas sympodial bamboos accumulated less Zn in leaves than monopodial bamboos.

Conclusions

The findings of this study suggest that a genotypic character may be responsible for Si, Cu and Zn accumulation in bamboo.  相似文献   

11.

Aims

This study evaluated how iron nutrition affect leaf anatomical and photosynthetic responses to low cadmium and its accumulation in peanut plants.

Methods

Seedlings were treated with Cd (0 and 0.2 μM CdCl2) and Fe (0, 10, 25, 50 or 100 μM EDTA-Na2Fe) in hydroponic culture.

Results

Cadmium accumulation is highest in Fe-deficient plants, and dramatically decreased with increasing Fe supply. The biomass, gas exchange, and reflectance indices were highest at 25 μM Fe2+ treatments, indicating the concentration is favorable for the growth of peanut plants. Both Fe deficiency and Cd exposure impair photosynthesis and reduce reflectance indices. However, they show different effects on leaf anatomical traits. Fe deficiency induces more and smaller stomata in the leaf surface, but does not affect the inner structure. Low Cd results in a thicker lamina with smaller stomata, thicker palisade and spongy tissues, and lower palisade to spongy thickness ratio. The stomatal length and length/width ratio in the upper epidermis, spongy tissue thickness, and palisade to spongy thickness ratio were closely correlated with net photosynthetic rate, stomatal conductance, and transpiration rate.

Conclusions

Cd accumulation rather than Fe deficiency alters leaf anatomy that may increase water use efficiency but inhibit photosynthesis.  相似文献   

12.

Aims

The current study aimed to assess the potential of peanut (Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach.

Methods

A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg?1.

Results

Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg?1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg?1). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots.

Conclusions

The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.  相似文献   

13.

Background and aims

Whereas the expression patterns and kinetic properties of the rice (Oryza sativa) phosphate transporter gene OsPht1; 6 (OsPT6) are well documented, little is known about the biological functions of this gene. The aim of this study was to investigate the roles of OsPT6 in inorganic phosphate (Pi) acquisition and mobilization, and examine its potential to enhance agricultural production.

Methods

Here, we generated OsPT6 overexpression transgenic plants using Wuyujing 7, a widely cultivated variety of japonica rice, and then treated transgenic lines and wild type with different Pi supply in hydroponic and soil experiments to explore the functions of OsPT6 in rice.

Results

The OsPT6-overexpressing rice lines grew better and accumulated more biomass than wild-type plants, and exhibited significant increases in P accumulation in various tissues, including reproductive tissues under both hydroponic and soil culture conditions. Phosphate-uptake experiment using radiolabeled Pi (33P) showed that the rate of Pi uptake was 75 % and 73 % greater in transgenic plants grown under Pi-sufficient and -deficient conditions, respectively, than the wild-type controls, and that the shoot/root ratio of 33P was 104 % and 42 % greater, respectively. In addition, the grain yield per transgenic plant was much higher than that of the wild-type plants under field conditions.

Conclusions

Taken together, our results demonstrate that OsPT6 plays a vital role in Pi acquisition and mobilization in rice and suggest that this gene may be used for genetic engineering rice plants that require less Pi fertilizer.  相似文献   

14.

Background and aims

The rice production is experiencing a shift from conventionally seedling-transplanted (TPR) to direct-seeded (DSR) cropping systems in Southeast Asia. Besides the difference in rice crop establishment, water regime is typically characterized as water-saving moist irrigation for DSR and flooding-midseason drainage-reflooding and moist irrigation for TPR fields, respectively. A field experiment was conducted to quantify methane (CH4) and nitrous oxide (N2O) emissions from the DSR and TPR rice paddies in southeast China.

Methods

Seasonal measurements of CH4 and N2O fluxes from the DSR and TPR plots were simultaneously taken by static chamber-GC technique.

Results

Seasonal fluxes of CH4 averaged 1.58 mg m?2 h?1 and 1.02 mg m?2 h?1 across treatments in TPR and DSR rice paddies, respectively. Compared with TPR cropping systems, seasonal N2O emissions from DSR cropping systems were increased by 49 % and 46 % for the plots with or without N application, respectively. The emission factors of N2O were estimated to be 0.45 % and 0.69 % of N application, with a background emission of 0.65 and 0.95 kg N2O-N ha?1 under the TPR and DSR cropping regimes, respectively. Rice biomass and grain yield were significantly greater in the DSR than in the TPR cropping systems. The net global warming potential (GWP) of CH4 and N2O emissions were comparable between the two cropping systems, while the greenhouse gas intensity (GHGI) was significantly lower in the DSR than in the TPR cropping systems.

Conclusions

Higher grain yield, comparable GWP, and lower GHGI suggest that the DSR instead of conventional TPR rice cropping regime would weaken the radiative forcing of rice production in terms of per unit of rice grain yield in China, and DSR rice cropping regime could be a promising rice development alternative in mainland China.  相似文献   

15.

Background

Poplars accumulate inordinate amounts of B in their leaves and are candidate plants for the remediation of B contaminated soil. We aimed to determine the effect of heterogeneous B distribution in soil by comparing the growth and B accumulation of young Populus tremula trees growing in soil with heterogeneous and homogeneous B distributions.

Methods

The first of two experiments focused on the tolerance and B accumulation of P. tremula under heterogeneous soil B distributions, while the second was designed to study fine root growth under such conditions in detail.

Results

Growth and B accumulation of P. tremula were unaffected by the spatial distribution of B. Root and shoot growth were both reduced simultaneously when leaf B concentrations increased above 800 mg kg?1. In the heterogeneous soil B treatments, root growth was more reduced in spiked soil portions with B concentrations >20 mg kg?1. Fine root length growth was stronger inhibited by B stress than secondary growth.

Conclusions

The root growth responses of P. tremula to B are primarily a systemic effect induced by shoot B toxicity and local toxicity effects on roots become dominant only at rather high soil B concentrations. Local heterogeneity in soil B should have little influence on the phytoremediation of contaminated sites.  相似文献   

16.

Background and aims

Salt is known to accumulate in the root-zone of Na+ excluding glycophytes under saline conditions. We examined the effect of soil salinity on Na+ and Cl? depletion or accumulation in the root-zone of the halophyte (Atriplex nummularia Lindl).

Methods

A pot experiment was conducted in soil to examine Na+ and Cl? concentrations adjacent to roots at four initial NaCl treatments (20, 50, 200 or 400 mM NaCl in the soil solution). Plant water use was manipulated by leaving plants with all leaves intact, removing approximately 50 % of leaves, or removing all leaves. Daily evapotranspiration was replaced by watering undrained pots to weight with deionised water. After 35-38 days, samples were taken of the bulk soil and of soil loosely- and closely-adhering to the roots.

Results

In plants with leaves intact grown with 200 and 400 mM NaCl, average Na+ and Cl? concentrations in the closely adhering soil were about twice the concentrations of the bulk soil. Ion accumulation increased with final leaf area and with cumulative transpiration over the duration of the trial. By contrast, in plants grown with the lowest salinity treatment (20 mM NaCl), Na+ and Cl? concentrations decreased in the closely adhering soil with increasing leaf area and increasing cumulative water use.

Conclusions

Our data show that Na+ and Cl? are depleted from the root-zone of A. nummularia at low salinity but accumulate in the root-zone at moderate to high salinity, and that the ions are drawn towards the plant in the transpiration stream.  相似文献   

17.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

18.
A complete protocol for the in vitro induction of Eclipta alba tetraploids has been optimized to enhance the wedelolactone content, an anti-cancerous compound. The effects of different concentrations of colchicine (0, 0.01, 0.05, 0.1, 0.2 and 0.3%; w/v) along with treatment durations (12, 24, 36 and 48 h) were investigated on shoot tip (ST) and nodal segment (NS). The treated explants were then incubated on Murashige and Skoog (MS) medium having 1.5 mg L?1 N6-benzylaminopurine and 0.5 mg L?1 α-napthalene acetic acid for shoot regeneration and afterward root was induced on 1.0 mg L?1 indole-3-acetic acid enriched ½MS medium. The tetraploids of E. alba were proficiently induced by the treatment of 0.1% colchicine for 24 h. The highest tetraploid induction efficiency was obtained from ST (30.56%) in comparison to the NS (22.22%). Analysis by spectrophotometry and flow cytometry showed that colchicine treated plants contained higher quantity of DNA than diploid plants. Cytological studies demonstrated doubled the chromosome number in tetraploids (2n?=?4x?=?44) than diploids (2n?=?2x?=?22). The ploidy level enhancement lead to alteration of other traits, like increased plant height, stem diameter, leaf size, stomatal size and chlorophyll content. As determined through high performance thin-layer chromatography, the ultimate achievement of this technique is the higher accumulation of wedelolactone in tetraploid plants (300.32 µg g?1 dry weight) in evaluation to in vitro diploid (131.31 µg g?1 dry weight) and in vivo diploid mother plants (93.26 µg g?1 dry weight), thus improving the pharmaceutical value of E. alba.  相似文献   

19.

Background & Aims

The effects of an alfalfa plant (Medicago sativa L.) hydrolysate-based biostimulant (EM) containing triacontanol (TRIA) and indole-3-acetic acid (IAA) were tested in salt-stressed maize plants.

Methods

Plants were grown for 2 weeks in the absence of NaCl or in the presence (25, 75 and 150 mM). On the 12th day, plants were supplied for 48 h with 1.0 mg L?1 EM or 11.2 μM TRIA.

Results

EM and TRIA stimulated the growth and nitrogen assimilation of control plants to a similar degree, while NaCl reduced plant growth, SPAD index and protein content. EM or TRIA increased plant biomass under salinity conditions. Furthermore, EM induced the activity of enzymes functioning in nitrogen metabolism. The activity of antioxidant enzymes and the synthesis of phenolics were induced by salinity, but decreased after EM treatment. The enhancement of phenylalanine ammonia-lyase (PAL) activity and gene expression by EM was consistent with the increase of flavonoids.

Conclusion

The present study proves that the EM increases plant biomass even when plants are grown under salinity conditions. This was likely because EM stimulated plant nitrogen metabolism and antioxidant systems. Therefore, EM may be proposed as bioactive product in agriculture to help plants overcome stress situations.  相似文献   

20.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号