首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl)pyridine derivatives was synthesized and evaluated as I kappaB kinase beta (IKK-beta) inhibitors. Modification of a novel IKK-beta inhibitor 1 (IKK-beta IC(50)=1500 nM, Cell IC(50)=8000 nM) at the 4-phenyl ring and 6-phenol group on the pyridine core ring resulted in a marked increased in biological activities. An optimized compound, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile, exhibited excellent in vitro profiles (IKK-beta IC(50)=8.5 nM, Cell IC(50)=60 nM) and a strong oral efficacy in in vivo anti-inflammatory assays (significant effects at 1mg/kg, po in arachidonic acid-induced ear edema model in mice).  相似文献   

2.
The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT3 chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs.  相似文献   

3.
Chemokines mediate their diverse activities through G protein-coupled receptors. The human homolog of the bovine orphan receptor PPR1 shares significant similarity to chemokine receptors. Transfection of this receptor into murine L1.2 cells resulted in responsiveness to monocyte chemoattractant protein (MCP)-4, MCP-2, and MCP-1 in chemotaxis assays. Binding studies with radiolabeled MCP-4 demonstrated a single high affinity binding site with an IC(50) of 0.14 nM. As shown by competition binding, other members of the MCP family also recognized this receptor. MCP-2 was the next most potent ligand, with an IC(50) of 0.45 nM. Surprisingly, eotaxin (IC(50) = 6.7 nM) and MCP-3 (IC(50) = 4.1 nM) bind with greater affinity than MCP-1 (IC(50) = 10.7 nM) but only act as agonists in chemotaxis assays at 100-fold higher concentrations. Because of high affinity binding and functional chemotactic responses, we have termed this receptor CCR11. The gene for CCR11 was localized to human chromosome 3q22, which is distinct from most CC chemokine receptor genes at 3p21. Northern blot hybridization was used to identify CCR11 expression in heart, small intestine, and lung. Thus CCR11 shares functional similarity to CCR2 because it recognizes members of the MCP family, but CCR11 has a distinct expression pattern.  相似文献   

4.
A novel series of N-alkylidenearylcarboxamides 4, a CB(2) receptor agonist, were synthesized and evaluated for activity against the human CB(2) receptor. In a previous paper, we reported that sulfonamide derivative 1 acted as a potent CB(2) receptor agonist (IC(50)=65 nM, EC(50)=19 nM, E(max)=90%). However, compound 1 also exhibited poor metabolic stability in human liver microsomes. During the structural modification of 1, we found that a novel series of N-alkylidenearylcarboxamide, 4-1, had a moderate affinity for the CB(2) receptor (IC(50)=260 nM, EC(50)=86 nM, E(max)=100%) and good metabolic stability in human liver microsomes. We explored its analogues to discover compounds with a high affinity for the CB(2) receptor and with good oral bioavailability. Among them, compounds 4-9 and 4-27 had high affinities for the human CB(2) receptor (CB(2) IC(50)=13 nM and 1.2 nM) and a high selectivity for CB(2) (CB(1) IC(50)/CB(2) IC(50)=270 and 1600); furthermore, significant plasma levels were observed following oral administration in rats (C(max)=233 ng/mL and 148 ng/mL, respectively, after a dose of 10 mg/kg). Furthermore, compound 4-9 had good oral bioavailability (F=52%, 3mg/kg).  相似文献   

5.
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication. In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC(50) values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC(50) value of 375 nM and a maximally effective concentration caused 91% block. [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in approximately 80% of neurons, with an IC(50) value of 1.4 nM and 46% maximal block of the total current. The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the alpha-conotoxins PnIA or PnIB, and by mecamylamine. (1)H NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and 11 of PnIA and PnIB influence potency and determine selectivity among alpha7 and other nAChR subtypes, including alpha3beta2 and alpha3beta4. Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.  相似文献   

6.
Based on the structure of ZK91296 (4d), a high affinity partial agonist of the central benzodiazepine (omega) receptor, a series of pyrrolo[2,3-c]pyridine-5-carboxylate derivatives having mainly aralkyl and aralkyloxy substituents at C-3 was synthesized. The in vitro binding affinities of these compounds for three subclasses of the omega receptor (omega1, omega2, omega5) were determined using rat brain tissue. Practically all of these compounds (except the diethyl ester derivative 22c) showed an approximately twofold selectivity for omega1 (IC50's in the 200-500 nM range) compared to omega2 receptors and practically no affinity for omega5 receptors. Compound 22c showed the highest affinity of all the compounds synthesized (IC50 = 70 nM for omega1 receptors) as well as a fivefold selectivity for omega1 versus omega2 receptors but also displayed significant binding to omega5 receptors (IC50 = 250 nM). The absence of appreciable binding of 4-methyl and 4-methoxymethyl derivatives to omega receptors, in contrast to beta-carbolines having these similarly located substituents, suggests that the pyrrolo[2,3-c]pyridine-5-carboxylates may be considered an entirely novel class of selective omega receptor ligands.  相似文献   

7.
A series of 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl)pyridine derivatives was synthesized and evaluated as IkappaB kinase beta (IKK-beta) inhibitors. Substitution of an aminoalkyl group for the aromatic group at the 4-position on the core pyridine ring resulted in a marked increase in both kinase enzyme and cellular potencies, and provided potent IKK-beta inhibitors with IC(50) values of below 100 nM.  相似文献   

8.
N-n-Alkylpicolinium and N,N'-alkyl-bis-picolinium analogues were assessed in nicotinic receptor (nAChR) assays. The most potent and subtype-selective analogue, N,N'-dodecyl-bis-picolinium bromide (bPiDDB), inhibited nAChRs mediating nicotine-evoked [(3)H]dopamine release (IC(50)=5 nM; I(max) of 60%), and did not interact with alpha4beta2* or alpha7* nAChRs. bPiDDB represents the current lead compound for development as a tobacco use cessation agent.  相似文献   

9.
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.  相似文献   

10.
Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay.  相似文献   

11.
Further SAR study around the central 1,2-disubstituted phenyl of the previously disclosed Cat K inhibitor (-)-1 has demonstrated that the solvent exposed P2-P3 linker can be replaced by various 5- or 6-membered heteroaromatic rings. While some potency loss was observed in the 6-membered heteroaromatic series (IC(50)=1 nM for pyridine-linked 4 vs 0.5 nM for phenyl-linked (+/-)-1), several inhibitors showed a significantly decreased shift in the bone resorption functional assay (10-fold for pyridine 4 vs 53-fold for (-)-1). Though this shift was not reduced in the 5-membered heteroaromatic series, potency against Cat K was significantly improved for thiazole 9 (IC(50)=0.2 nM) as was the pharmacokinetic profile of N-methyl pyrazole 10 over our lead compound (-)-1.  相似文献   

12.
Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a β-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 μm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 μm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1β1εδ) than the fetal form (α1β1γδ), EC(50) being 0.44 ± 0.1 μm and 1.56 ± 0.37 μm, respectively. The peptide had no effect on GABA(A) (α1β3γ2 or α2β3γ2) receptors at a concentration up to 100 μm or on 5-HT(3) receptors at a concentration up to 10 μm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.  相似文献   

13.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

14.
A series of 2-(arylmethyl)-3-substituted quinuclidines was developed as alpha7 neuronal nicotinic acetylcholine receptor (nAChR) agonists based on a putative pharmacophore model. The series is highly selective for the alpha7 over other nAChRs (e.g., the alpha4beta2 of the CNS, and the muscle and ganglionic subtypes) and is functionally tunable at alpha7. One member of the series, (+)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzo[b]furan-2-carboxamide (+)-8l), has potent agonistic activity for the alpha7 nAChR (EC(50)=33nM, I(max)=1.0), at concentrations below those that result in desensitization.  相似文献   

15.
Leukotriene B4 (LTB4) and 12-(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-[R]-HETE) have been postulated to contribute to the pathophysiology of inflammatory diseases. SB 201993, (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl] oxy]-2-pyridinyl] methyl] thio] methyl] benzoic acid, identified from a chemical series designed as ring-fused analogs of LTB4, was evaluated as an antagonist of LTB4- and 12-(R)-HETE-induced responses in vitro and for anti-inflammatory activity in vivo. SB 201993 competitively antagonized [3-H]-LTB4 binding to intact human neutrophils (Ki = 7.6 nM) and to membranes of RBL 2H3 cells expressing the LTB4 receptor (RBL 2H3-LTB4R; IC50 = 154 nM). This compound demonstrated competitive antagonism of LTB4- and 12-(R)-HETE-induced Ca2+ mobilization responses in human neutrophils (IC50s of 131 nM and 105 nM, respectively) and inhibited LTB4-induced Ca2+ mobilization in human cultured keratinocytes (IC50 = 61 nM), RBL 2H3-LTB4R cells (IC50 = 255 nM) and mouse neutrophils (IC50 = 410 nM). SB 201993 showed weak LTD4-receptor binding affinity (Ki = 1.9 microM) and inhibited 5-lipoxygenase (IC50 of 3.6 microM), both in vitro and ex vivo. In vivo, SB 201993 inhibited LTB4-induced neutrophil infiltration in mouse skin and produced dose-related, long lasting topical anti-inflammatory activity against the fluid and cellular phases of arachidonic acid-induced mouse ear inflammation (ED50 of 580 microg/ear and 390 microg/ear, respectively). Similarly, anti-inflammatory activity was also observed in the murine phorbol ester-induced cutaneous inflammation model (ED50 of 770 and 730 microg/ear, respectively, against the fluid and cellular phases). These results indicate that SB 201993 blocks the actions of LTB4 and 12-(R)-HETE and inhibits a variety of inflammatory responses; and thus may be a useful compound to evaluate the role of these mediators in disease models.  相似文献   

16.
Three new approaches have been tested to modify existing pyridopyrimidine and alkynylpyrimidine classes of nonnucleoside adenosine kinase inhibitors 2 and 3. 4-Amino-substituted pteridines 8a-e were generally less active than corresponding 5- and 6-substituted pyridopyrimidines 2. Pyrazolopyrimidine 13c with IC(50)=7.5 nM was superior to its open chain alkynylpyrimidine analog 13g (IC(50)=22 nM) while pyrrolopyrimidines such as 17a were inactive.  相似文献   

17.
Alpha series of novel 3,6-diazabicyclo[3.1.1]heptane derivatives 4a-f was synthesized and their affinity and selectivity towards alpha4beta2 and alpha7 nAChR subtypes were evaluated. The results of the current study revealed a number of compounds (4a, 4b and 4c) having a very high affinity for alpha4beta2 (K(i) at alpha4beta2 ranging from 0.023 to 0.056 nM) versus alpha7 nAChR subtypes; among these compounds, the 3-(6-bromopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane 4c was found to be the most alpha7alpha4beta2 selective term in receptor binding assays (alpha7alpha4beta2=1295). Moreover, compound 4d also had high affinity for the alpha4beta2 nAChR subtype (K(i)=1.2 nM) with considerably high selectivity (alpha7/alpha4beta2=23300).  相似文献   

18.
Synthesis and structure-activity relationships of 2-substituted-5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids, a novel class of endothelin receptor antagonists, were described. Derivatization of a lead structure 1 (IC(50)=2.4nM, 170-fold selectivity) by incorporating a substituent such as an alkyl, alkoxy, alkylthio, or alkylamino group into the 2-position of the cyclopenteno[1,2-b]pyridine skeleton was achieved via the key intermediate 8. Introduction of an alkyl group led to the identification of potent ET(A)/ET(B) mixed receptor antagonists, a butyl (2d: IC(50)=0.21nM, 52-fold selectivity) and an isobutyl (2f: IC(50)=0.32nM, 26-fold selectivity) analogue. In contrast, installment of a primary amino group resulted in ET(A) selective antagonists, a propylamino 2p (IC(50)=0.12nM, 520-fold selectivity) and an isopropylamino 2q (IC(50)=0.10nM, 420-fold selectivity) analogue. These results suggested that a substituent at the 2-position of the 5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids played a key role in the binding affinity for both ET(A) and ET(B) receptors.  相似文献   

19.
Synthesis of (+/-)-cis-7-hydroxy-3-phenyl-4-(4-(2-piperidinoethanethio)phenyl)chromane (13) and (+/-)-cis-7-hydroxy-3-phenyl-4-(4-(2-pyrrolidinoethanethio)phenyl)chromane (15) is presented. These compounds are representatives of a novel class of compounds with high in vitro binding affinity for the estrogen receptor (IC(50)=7-10 nM), and very low in vitro uterotrophic activity (max stim.=5-17% rel to moxestrol; EC(50)=0.5-1.8 nM).  相似文献   

20.
Syntheses and structure-activity relationships of a novel class of 2-[3-oxospiro[isobenzofuran-1(3H),1'-cyclohexan]-4'-yl]benzimidazole NPY Y5 receptor antagonists are described. Optimization of the lead compound 2a by incorporating substituents into the 5-position or into both the 5- and 6-positions of the benzimidazole core part led to the identification of 5-(5-methyl-1,2,4-oxadiazol-2-yl)benzimidazole (2r: IC(50)=3.3 nM) and 5-(2-methyltetrazol-5-yl)benzimidazole (2u: IC(50)=5.9 nM), both of which are potent, selective, and orally bioavailable Y5 receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号